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摘 要 

蒸發量為水文循環中重要的能量與質量交換過程，對農業灌溉與水資源管理具有關鍵影

響，惟實測資料常因觀測設施限制與環境條件而存在缺測問題。為提升蒸發量資料完整性，

本研究結合集成學習  (Ensemble Learning) 方法與臺灣歷史氣候重建資料  (Taiwan 
ReAnalysis Downscaling Data, TReAD)，建構皿蒸發量缺測補遺模式。資料來源包含中央氣象

署五個測站之皿蒸發量觀測值與對應之 TReAD 氣象資料，選取日射量、風速、氣溫、濕度、

氣壓與降雨量等六項氣象因子作為模型輸入，分別採用隨機森林 (Random Forest, RF)、自適

應提升法 (Adaptive Boosting, AdaBoost)、梯度提升法 (Gradient Boosting, GB)、極端梯度提

升法  (Extreme Gradient Boosting, XGBoost)、輕量梯度提升法  (Light Gradient Boosting 
Machine, LightGBM) 與類別提升法 (Categorical Boosting, CatBoost) 進行建模與資料補遺。

結果顯示，隨機森林在各缺測比例下均展現最佳補遺表現，平均絕對誤差 (Mean Absolute 
Error, MAE) 介於 0.880 ~ 0.907 mm/day 之間，且於不同測站與高缺測情境下仍具強健性。

殘差分析亦顯示隨機森林預測誤差分布集中且穩定，泛化能力優於其他模型。本研究所建構

之集成學習補遺模式兼具高精度與穩定性，未來可應用於皿蒸發量資料補遺與水文氣象長期

序列資料庫建置，進一步提升水資源調度、灌溉管理與氣候風險評估之資料可靠性與完整性。 
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ABSTRACT 

Evaporation plays a crucial role in the hydrological cycle as a key process of energy and mass 
exchange, and has significant implications for agricultural irrigation and water resource 
management. However, direct evaporation observations are often incomplete due to limitations in 
instrumentation, operational constraints, and environmental conditions. To improve the 
completeness of evaporation datasets, this study integrates ensemble learning approaches with 
Taiwan ReAnalysis Downscaling Data (TReAD) to develop a pan evaporation data imputation 
model. The dataset comprises pan evaporation observations from five Central Weather 
Administration (CWA) stations in Taiwan, along with corresponding TReAD meteorological data. 
Six meteorological variables—solar radiation, wind speed, air temperature, relative humidity, air 
pressure, and precipitation—were selected as model inputs. Six ensemble learning algorithms, 
including Random Forest (RF), Adaptive Boosting (AdaBoost), Gradient Boosting (GB), Extreme 
Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Categorical 
Boosting (CatBoost), were employed for model training and imputation. The results indicate that 
RF consistently demonstrated the best imputation performance across various missing data 
scenarios, with mean absolute errors (MAE) ranging from 0.880 to 0.907 mm/day, and maintained 
robust performance across different stations and high missing rates. Residual analyses further 
confirmed the stability and generalization capability of RF compared to other models. The ensemble 
learning-based imputation model developed in this study exhibits high accuracy and stability, and 
can be applied to pan evaporation data recovery and long-term hydrometeorological database 
construction, thereby enhancing the reliability and completeness of datasets for water resource 
planning, irrigation management, and climate risk assessment. 
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一、前言 
 
蒸發量為水文循環中關鍵之能量與質量交換過

程，廣泛影響農業灌溉、水資源管理、氣候變遷評估

及生態環境研究 (Barella-Ortiz et al. 2013; Burn and 
Hesch 2007; Goodarzi et al. 2025; Konapala et al. 2020)。
準確掌握蒸發量變化特性，有助於提升水資源規劃調

度效率，並強化對極端氣候風險之應變能力。然而，

實際蒸發量觀測常受限於儀器設備、人力成本與地理

環境條件，尤其在地形複雜或偏遠地區，長期穩定設

站與連續量測相對困難。 
目前實務上多以 A 型蒸發皿 (Class A Pan) 進

行直接量測，雖可提供設站位置之實測蒸發資料，惟

其設置與維護成本高昂，且易受設備故障、環境干擾

及長期觀測過程中資料缺漏等問題所影響。除直接觀

測外，亦可透過經驗公式 (如 Penman-Monteith) 以氣

象因子間接推估蒸發量  (Allen et al. 1998; Barella-
Ortiz et al. 2013)，惟其推估精度高度依賴完整且連續

之氣象監測資料，當遭遇多變數缺測情境時，預測誤

差將明顯上升，影響推估準確性。 
隨著人工智慧技術之快速發展，資料驅動之機器

學習方法已廣泛應用於蒸發量推估領域，並展現優於

傳 統 經 驗 公 式 之 預 測 性 能  (Abed et al. 2023; 
Aghelpour et al. 2022; Goodarzi et al. 2025; Lin et al. 
2013; Pourebrahim et al. 2024; Shabani et al. 2024; Wu 
et al. 2013; 林與劉 2015; 陳與李 2016)。例如，陳與

李 (2016) 利用支撐向量機 (Support Vector Machine, 
SVM) 進行台灣長期皿蒸發量資料重建以探討台灣長

期蒸發量變化趨勢，該研究驗證機器學習方法於台灣

地區蒸發資料重建之可行性。Abed et al. (2022) 探討

以隨機森林  (Random Forest, RF)、卷積神經網路 
(Convolutional Neural Network, CNN) 與深度神經網

路 (Deep Neural Network, DNN) 等機器學習與深度學

習方法，預測馬來西亞四個測站之月皿蒸發量，整體

表現優於 Stephens-Stewart 與 Thornthwaite 等傳統

經驗公式。Kisi et al. (2022) 評估多種深度學習與機器

學習模型在使用有限氣象變數進行皿蒸發量推估的效

能，包含長短期記憶網路 (Long Short-Term Memory, 
LSTM)、LSTM結合灰狼演算法Grey Wolf Optimization
之 LSTM-GWO、以及多種結合 GWO 的機器學習模

型如自適應類神經模糊推論系統  (Adaptive Neuro-
Fuzzy Inference System, ANFIS-GWO)、支持向量回歸 
(Support Vector Regression, SVR-GWO)、人工神經網

路 (Artificial Neural Network, ANN-GWO)。結果顯示，

LSTM-GWO 混合模型在三個氣象站與不同訓練測試

資料比例的試驗中，皆展現出優於其他單一或混合 

模型的預測能力，為皿蒸發量推估提供更具準確性的

解法。 
此外，部分研究更進一步導入集成學習 (Ensemble 

Learning) 以提升預測穩定性與準確性。Salahudin et al. 
(2023) 對參考蒸散發量 (Reference Evapotranspiration, 
ET₀) 預測，結合單一決策樹  (Single Decision Tree, 
SDT)、樹提升 (Tree Boost, TB)、決策樹森林 (Decision 
Tree Forest, DTF) 等集成模型，並進一步提出非線性集

成 (Non-linear Ensemble, NLE) 架構，結果顯示，基於

DTF 的模型相比其他機器學習方法能夠在使用較少氣

象變數的情況下，更準確地預測 ET₀，並搭配 NLE 方

法將顯著提升了預測精度，該研究結果證實了集成學

習在參考蒸散發量預測中的潛力。 
除了蒸發量推估外，缺測資料補遺亦為機器學習

應用之另一重要研究方向。Han et al. (2023) 以南韓 
30 站降雨資料為例，結合 ANN 與 RF 建構降雨缺測

資料補遺模式，透過氣壓、氣溫、相對濕度與風速等

環境變數為輸入因子。研究結果顯示，該模式對缺測

資料之辨識準確率達 80%，補遺結果之相關係數介於

0.5 至 0.7 之間，R²值約為 0.53，展現穩定且具潛力之

資料補遺能力，並證實機器學習技術可有效提升觀測

資料完整性。針對高頻次降雨資料缺測，Chivers et al. 
(2020) 以英國 37 站 30 分雨量資料提出二階段補遺架

構。首先以分類模型辨識降雨與非降雨樣本，再針對

判定為降雨樣本使用迴歸模型進行實際雨量推估。此

方法能有效處理降雨與非降雨樣本不平衡特性，並整

合來自目標站點與周邊觀測站之氣象變數以提升模型

效能。研究結果顯示，所建構之機器學習架構整體表

現優於傳統鄰近站點插值法，特別適用於處理高時間

解析度資料之缺測補遺問題。Li et al. (2023) 則建立

多維機器學習補遺框架  (Machine-learning-based 
Multidimensional meteorological Data Imputation 
Framework, MMDIF)，於中國六個氣候區 124 站氣象

資料進行測試，驗證其於隨機多變數缺測條件下之應

用潛力，其中以隨機森林 (MMDIF-RF) 模型表現最

佳，具備最佳補遺穩定性與跨領域應用潛力。 
整體而言，現有研究多以地面測站資料作為主要

訓練來源，當觀測資料分布不均或多變數同時發生缺

測時，模型訓練與應用仍面臨顯著挑戰，尤其在高缺

漏比例或樣本變異性高之情境下，模型之強健性與泛

化能力尚有強化空間。有鑑於此，本研究引入臺灣氣

候變遷推估資訊與調適知識平台  (Taiwan Climate 
Change Projection and Information Platform, TCCIP) 所
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資料補遺能力，並證實機器學習技術可有效提升觀測

資料完整性。針對高頻次降雨資料缺測，Chivers et al. 
(2020) 以英國 37 站 30 分雨量資料提出二階段補遺架

構。首先以分類模型辨識降雨與非降雨樣本，再針對

判定為降雨樣本使用迴歸模型進行實際雨量推估。此

方法能有效處理降雨與非降雨樣本不平衡特性，並整

合來自目標站點與周邊觀測站之氣象變數以提升模型

效能。研究結果顯示，所建構之機器學習架構整體表

現優於傳統鄰近站點插值法，特別適用於處理高時間

解析度資料之缺測補遺問題。Li et al. (2023) 則建立

多維機器學習補遺框架  (Machine-learning-based 
Multidimensional meteorological Data Imputation 
Framework, MMDIF)，於中國六個氣候區 124 站氣象

資料進行測試，驗證其於隨機多變數缺測條件下之應

用潛力，其中以隨機森林 (MMDIF-RF) 模型表現最

佳，具備最佳補遺穩定性與跨領域應用潛力。 
整體而言，現有研究多以地面測站資料作為主要

訓練來源，當觀測資料分布不均或多變數同時發生缺

測時，模型訓練與應用仍面臨顯著挑戰，尤其在高缺

漏比例或樣本變異性高之情境下，模型之強健性與泛

化能力尚有強化空間。有鑑於此，本研究引入臺灣氣

候變遷推估資訊與調適知識平台  (Taiwan Climate 
Change Projection and Information Platform, TCCIP) 所
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發展之臺灣歷史氣候重建資料  (Taiwan ReAnalysis 
Downscaling data, TReAD)，作為補遺模型之氣象輸入

特徵來源。該資料具備高時空解析度與多變數完整性，

可有效補足地面觀測資料之不足；而皿蒸發量則以實

際測站觀測資料作為預測目標值。本研究進一步導入

多種集成學習方法，包含隨機森林 (RF)、自適應提升

法  (Adaptive Boosting, AdaBoost) 、 梯 度 提 升 法 
(Gradient Boosting, GB)、極端梯度提升法 (Extreme 
Gradient Boosting, XGBoost)、輕量梯度提升法 (Light 
Gradient Boosting Machine, LightGBM) 與類別提升法 
(Categorical Boosting, CatBoost) 建構皿蒸發量之缺測

資料補遺模式，並進行系統性之訓練與驗證。 
本研究之主要目標包括：(1) 探討氣候重建資料

應用於蒸發量缺測補遺之可行性，(2) 系統性比較不

同集成學習方法於補遺任務中的效能，(3) 分析不同

缺測情境與測站氣象特性對模型泛化能力與強健性之

影響。期望本研究所建構之蒸發量補遺模式，能有效

提升臺灣地區水文氣象資料之完整性與應用價值，並

為後續水資源調度規劃、灌溉用水需求預估及氣候變

遷風險分析提供穩定可靠之數據基礎。 
 

二、研究方法 
 

2.1 皿蒸發量觀測資料 

為驗證本研究所提出之資料補遺模式，本研究選

取台灣中部地區設有逐日 A 型蒸發量觀測資料之中

央氣象署所屬測站進行分析，包含田中站  (站碼

467270)、嘉義站 (站碼 467480)、阿里山站 (站碼

467530)、玉山站 (站碼 467550)及日月潭站 (站碼

467650)。各測站之空間分布如圖 1 所示，基本資料彙

整於表 1。 
本研究取用各測站自 2020 年至 2023 年之觀測資

料，共計 4 年。各測站蒸發量之日序列如圖 2 所示。

觀測資料中，部分日期之蒸發量以「/」及「--」標示，

分別代表資料不明及無觀測記錄，故本研究將此兩類

資料視為缺測值，並於圖 2 標示「x」以顯示缺測值數

量。田中站、嘉義站、阿里山站、玉山站及日月潭站

之缺測筆數分別為 14、24、35、497 及 5 筆，其中以

玉山站缺測比例最高，且缺漏資料多集中於冬季月份。

推測其主因為玉山屬高山測站，冬季期間常出現低溫

乃至長時間低於冰點，導致蒸發皿內水體結冰，致使

蒸發觀測無法正常進行。 
 

2.2 臺灣歷史氣候重建資料 
 
蒸發量受多項氣象因子影響，包括太陽輻射、氣

溫、相對濕度、風速與氣壓等，因此可透過與蒸發現

象密切相關之氣象因子作為模式建構之依據。然而，

在實際觀測過程中，氣象觀測資料亦可能因測站設備 
 

 
圖 1 氣象站位置圖 
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表 1 採用氣象站之基本資料 

站名 站碼 
WGS84 

十分位緯度座標 
WGS84 

十分位經度座標 
高程高程(EL.m) 縣市 設站日期 

田中 467270 120.5813 23.8738 48.6 彰化縣 2020/4/10 

嘉義 467480 120.4329 23.4959 26.9 嘉義市 1968/9/1 

阿里山 467530 120.8132 23.5082 2413.4 嘉義縣 1933/1/1 

玉山 467550 120.9594 23.4872 3844.8 南投縣 1943/1/1 

日月潭 467650 120.9081 23.8813 1017.5 南投縣 1940/1/1 

 

 

圖 2 2000~2023 年各氣象站蒸發量序列圖 

故障或觀測條件受限而出現缺測情形，進而影響補遺

模式之適用性與穩定性。 
為克服氣象觀測資料缺漏問題，本研究引入

TCCIP 所發展之 TReAD 資料，該資料以 WRF 
(Weather Research and Forecasting) 氣象模式為基礎，

針對歐洲中期天氣預報中心  (European Centre for 
Medium-Range Weather Forecasts, ECMWF) 所產製之

ERA5 重分析資料進行動力降尺度處理，可提供連續

且高空間解析度之歷史氣候資訊，提升缺測期間氣象

資料之可得性。 
TReAD 資料涵蓋多項與蒸發現象相關之氣象因

子，包括日射量 (MJ/m²)、平均風速 (m/s)、平均溫 
(℃)、最高溫 (℃)、最低溫 (℃)、氣壓 (hPa)、相對濕

度 (%)及降雨量 (mm)。目前資料涵蓋至 2023 年 12
月 31 日，空間解析度為 2 公里，範圍涵蓋全台灣。憑

藉其時間與空間上之完整性，TReAD 資料可作為本研

究測站資料補遺模式建置之氣象輸入因子來源。 

2.3 集成學習方法 
 
集成學習透過結合多個基礎學習器之預測結果，

有效提升整體模型之穩定性與預測精度。其方法可大

致分為兩大類型：(1) Bagging 與 (2) Boosting。Bagging
透過自助重抽樣 (Bootstrap Sampling) 產生多個訓練

子集，分別訓練基礎學習器，並將各模型之之預測結

果取平均 (回歸問題) 或多數投票 (分類問題) 以獲

得最終預測，主要可有效降低模型變異 (Variance)，提

升模型穩定性；Boosting 為一種序列式集成學習技術，

將若干個弱學習器 (weak learners) 逐步組合成一個

強學習器 (strong learner)。採用逐步加強學習 (Stage-
wise Additive Modeling) 策略，每輪訓練的弱學習器會

根據前一輪模型的預測誤差，調整訓練樣本的權重分

布，使預測錯誤的樣本在下一輪佔據更高比重，藉此

提升整體模型對於困難樣本的學習能力。最終，各輪

模型的預測結果將依其精度加權整合，形成具穩定性



農業工程學報｜第 71 卷 - 第 4 期｜

中 華 民 國 1 1 4 年 1 2 月 出 版

55 

−5− 

表 1 採用氣象站之基本資料 

站名 站碼 
WGS84 

十分位緯度座標 
WGS84 

十分位經度座標 
高程高程(EL.m) 縣市 設站日期 

田中 467270 120.5813 23.8738 48.6 彰化縣 2020/4/10 

嘉義 467480 120.4329 23.4959 26.9 嘉義市 1968/9/1 

阿里山 467530 120.8132 23.5082 2413.4 嘉義縣 1933/1/1 

玉山 467550 120.9594 23.4872 3844.8 南投縣 1943/1/1 

日月潭 467650 120.9081 23.8813 1017.5 南投縣 1940/1/1 

 

 

圖 2 2000~2023 年各氣象站蒸發量序列圖 

故障或觀測條件受限而出現缺測情形，進而影響補遺

模式之適用性與穩定性。 
為克服氣象觀測資料缺漏問題，本研究引入

TCCIP 所發展之 TReAD 資料，該資料以 WRF 
(Weather Research and Forecasting) 氣象模式為基礎，

針對歐洲中期天氣預報中心  (European Centre for 
Medium-Range Weather Forecasts, ECMWF) 所產製之

ERA5 重分析資料進行動力降尺度處理，可提供連續

且高空間解析度之歷史氣候資訊，提升缺測期間氣象

資料之可得性。 
TReAD 資料涵蓋多項與蒸發現象相關之氣象因

子，包括日射量 (MJ/m²)、平均風速 (m/s)、平均溫 
(℃)、最高溫 (℃)、最低溫 (℃)、氣壓 (hPa)、相對濕

度 (%)及降雨量 (mm)。目前資料涵蓋至 2023 年 12
月 31 日，空間解析度為 2 公里，範圍涵蓋全台灣。憑

藉其時間與空間上之完整性，TReAD 資料可作為本研

究測站資料補遺模式建置之氣象輸入因子來源。 

2.3 集成學習方法 
 
集成學習透過結合多個基礎學習器之預測結果，

有效提升整體模型之穩定性與預測精度。其方法可大

致分為兩大類型：(1) Bagging 與 (2) Boosting。Bagging
透過自助重抽樣 (Bootstrap Sampling) 產生多個訓練

子集，分別訓練基礎學習器，並將各模型之之預測結

果取平均 (回歸問題) 或多數投票 (分類問題) 以獲
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與高泛化能力的預測成果。兩類方法之整體預測公式

可描述如下： 
1. Bagging 概念公式： 

( )
1

ˆ 1 M

m
m

y h x
M

=

= ∑  .................................................. (1) 

其中，hm (x) 為第𝑚𝑚𝑚𝑚個機器學習模型，M 為機器學習

模型數量，x 與 y 分別為輸入與輸出項。 
2. Boosting 概念公式： 

( )
1

ˆ 1 M

m m
m

y h x
M

α
=

= ∑  ............................................. (2) 

其中，αm 為每一個機器學習模型的權重，反映其在整

體預測中所占之貢獻。表現較差的模型將被賦予較低

的權重，以減少其對最終結果的影響。Boosting 透過

逐輪學習強化誤差修正與模型加權整合，有助於提升

預測的穩定性與泛化能力。 
本研究選用六種集成學習方法作為推估模型核

心，分別說明如下： 
1. RF：屬於 Bagging 方法，透過自助抽樣與隨機特徵

選擇 (Random Feature Selection)訓練多棵決策樹，

再以平均 (回歸問題) 或多數投票 (分類問題) 方
式整合各子模型預測結果，能有效降低過擬合風險

並提升模型穩定性。 
2. AdaBoost：屬於 Boosting 方法，透過調整樣本權重

來強化模型對於前一輪預測錯誤樣本的學習能力。

每輪模型會賦予不同的權重，整體模型為加權組合

結果。對於標記錯誤的樣本和極端異常值較為敏感，

可能導致過擬合問題。 
3. GB：屬於 Boosting 方法，逐輪擬合前一輪模型的殘

差，並將殘差作為新目標進行訓練，透過梯度下降

法逐步最小化損失函數，以提升整體模型的預測準

確度。 
4. XGBoost：屬於 Boosting 方法，在 GB 架構上引入

二階導數提升收斂效率，並加入正則化項以控制模

型複雜度，具備更高的訓練效率與避免過擬合之 

情形。 
5. LightGBM：屬於 Boosting 方法，採用 Leaf-wise 分

裂 策 略 與 直 方 圖 演 算 法  (Histogram-based 
Algorithm) 加速資料處理與分裂過程，可顯著降低

記憶體使用，適用於大規模資料集建模。 
6. CatBoost：屬於 Boosting 方法，引入順序增強 

(Ordered Boosting) 以 避 免 目 標 洩 漏  (Target 
leakage) 問題，並內建類別特徵自動編碼機制，有助

於處理異質資料並提升模型泛化能力。 
 

2.4 模型建置流程 
 

本研究之整體模型建置流程如圖 3 所示，主要包含資

料前處理、資料缺漏設定、模型訓練與補遺推估，以

及模型表現評估等四個階段，說明如下： 
1.資料前處理 

本研究整合兩類資料來源，包含地面觀測氣象站

之皿蒸發量觀測資料與 TReAD 資料。TReAD 資料提 

 
 

 

圖 3 研究流程圖 
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供各測站逐日氣象變數，本研究選用日射量、風速、

平均溫、氣壓、相對濕度與降雨量等，作為模型之輸

入特徵；皿蒸發量觀測資料則作為模型之預測目標值。

資料整理時，先進行缺測值清理與格式統整，移除無

法使用之不完整樣本，並執行時間序列配對，確保每

筆輸入特徵均對應至相應之蒸發量觀測值。 
2.資料缺漏設定 

為驗證所建模式之補遺能力，將經前處理後之完

整數據進行隨機抽樣設定缺測樣本。針對各測站隨機

抽取一定比例 (n%) 之樣本作為模式補遺之缺測資

料，其餘 (100−𝑛𝑛𝑛𝑛)%資料則作為訓練資料用於模型建

構。於本研究中以隨機抽取 5%、10%、30%與 50%四

種缺測比例進行測試。藉由調整缺測比例，可系統性

檢討各集成學習方法於不同缺測情境下之補遺表現，

並進一步評估模型之補遺準確性與強健性。 
3.模型訓練與率定 

訓練資料導入集成學習方法進行模型建構，包含

RF、AdaBoost、GB、XGBoost、LightGBM 及 CatBoost
等六種演算法。本研究於 Python 3.11.13 環境下進行

模型建構與驗證。RF、AdaBoost 與 GB 使用 scikit-learn
套件實作； XGBoost 採用由 DMLC (Distributed 
Machine Learning Community) 社群開發之版本 3.0.2；
LightGBM 採用 Microsoft Corporation 開發之版本

4.6.0；CatBoost 採用由 Yandex 開發之版本 1.2.8。 
模型訓練過程中，針對各演算法進行超參數設定

與調整，並透過網格搜尋法 (Grid Search) 選定最佳參

數組合，以提升模型整體預測性能與穩定性。各模型

藉由學習氣象因子與蒸發量間之非線性關聯，建構可

應用於缺測資料補遺之推估模型。 
4.模型表現評估 

補遺模型完成訓練後，利用預留之測試資料進行

獨立驗證補遺能力，並分別計算均值絕對誤差 (Mean 
Absolute Error, MAE)、均方根誤差 (Root Mean Square 
Error, RMSE)、相關係數 (Correlation Coefficient, CC) 
與效率係數 (Coefficient of Efficiency, CE) 等四項評

鑑指標，綜合評估模型之補遺準確度與強健性，指標

定義詳見第 2.5 節內容。若任一模型之誤差指標顯著

高於其他模型，或於不同隨機樣本下表現波動幅度較

大，則視為表現未達預期，將進一步優化超參數設定，

以提升模型整體表現與穩定性。 
 

2.5 評鑑指標 
 
本研究採用四種廣泛使用且具代表性的評鑑指

標，以全面評估模型之補遺性能： 

1.均值絕對誤差 (MAE) 
MAE 衡量預測值與實際觀測值之間的平均絕對

差異，提供直觀且穩定的誤差評估指標。MAE 值越接

近零，代表模型推估結果越為精確。其計算公式如下： 


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1MAE
n

t t
t

E E
n
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= −∑  .......................................... (3) 

其中，Et 為第 t 筆樣本之觀測值， tE 為第 t 筆樣本之

觀測值，n 為樣本數。 
2.均方根誤差 (RMSE) 

RMSE 透過對誤差平方後取平均再開根號，對較

大之誤差給予較高權重。RMSE 值愈小表示模型整體

預測精度愈高，特別能反映模型在大誤差控制上的能

力。其計算公式如下： 
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1RMSE
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n

=
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3.相關係數 (CC) 
CC 衡量觀測值與推估值之間的線性相關強度，

範圍為[-1,1]，其中越接近 1 表示正相關性越高，模型

能較好掌握資料趨勢。其計算公式如下： 
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其中， E 與 Ê 分別為觀測值與推估值之平均值。 
4.效率係數 (CE) 

CE 評估模型預測相較於以觀測均值作為預測值

的改善幅度。其值域為 (−∞, 1]，當 CE = 1 代表模型

預測完全吻合觀測值；CE = 0 表示模型表現與直接取

平均值相當；若 CE < 0 則表示模型表現不如平均值。

其計算公式如下： 
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三、結果與討論 
 

3.1 資料分析 
 
本研究整合五個地面觀測站之皿蒸發量與鄰近網

格網格氣象因子資料，進行模型建構前之資料特性分

析。表 2 為各觀測站皿蒸發量與氣象因子之統計摘要，
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供各測站逐日氣象變數，本研究選用日射量、風速、

平均溫、氣壓、相對濕度與降雨量等，作為模型之輸

入特徵；皿蒸發量觀測資料則作為模型之預測目標值。

資料整理時，先進行缺測值清理與格式統整，移除無

法使用之不完整樣本，並執行時間序列配對，確保每

筆輸入特徵均對應至相應之蒸發量觀測值。 
2.資料缺漏設定 

為驗證所建模式之補遺能力，將經前處理後之完

整數據進行隨機抽樣設定缺測樣本。針對各測站隨機

抽取一定比例 (n%) 之樣本作為模式補遺之缺測資

料，其餘 (100−𝑛𝑛𝑛𝑛)%資料則作為訓練資料用於模型建

構。於本研究中以隨機抽取 5%、10%、30%與 50%四

種缺測比例進行測試。藉由調整缺測比例，可系統性

檢討各集成學習方法於不同缺測情境下之補遺表現，

並進一步評估模型之補遺準確性與強健性。 
3.模型訓練與率定 

訓練資料導入集成學習方法進行模型建構，包含

RF、AdaBoost、GB、XGBoost、LightGBM 及 CatBoost
等六種演算法。本研究於 Python 3.11.13 環境下進行

模型建構與驗證。RF、AdaBoost 與 GB 使用 scikit-learn
套件實作； XGBoost 採用由 DMLC (Distributed 
Machine Learning Community) 社群開發之版本 3.0.2；
LightGBM 採用 Microsoft Corporation 開發之版本

4.6.0；CatBoost 採用由 Yandex 開發之版本 1.2.8。 
模型訓練過程中，針對各演算法進行超參數設定

與調整，並透過網格搜尋法 (Grid Search) 選定最佳參

數組合，以提升模型整體預測性能與穩定性。各模型

藉由學習氣象因子與蒸發量間之非線性關聯，建構可

應用於缺測資料補遺之推估模型。 
4.模型表現評估 

補遺模型完成訓練後，利用預留之測試資料進行

獨立驗證補遺能力，並分別計算均值絕對誤差 (Mean 
Absolute Error, MAE)、均方根誤差 (Root Mean Square 
Error, RMSE)、相關係數 (Correlation Coefficient, CC) 
與效率係數 (Coefficient of Efficiency, CE) 等四項評

鑑指標，綜合評估模型之補遺準確度與強健性，指標

定義詳見第 2.5 節內容。若任一模型之誤差指標顯著

高於其他模型，或於不同隨機樣本下表現波動幅度較

大，則視為表現未達預期，將進一步優化超參數設定，

以提升模型整體表現與穩定性。 
 

2.5 評鑑指標 
 
本研究採用四種廣泛使用且具代表性的評鑑指

標，以全面評估模型之補遺性能： 

1.均值絕對誤差 (MAE) 
MAE 衡量預測值與實際觀測值之間的平均絕對

差異，提供直觀且穩定的誤差評估指標。MAE 值越接

近零，代表模型推估結果越為精確。其計算公式如下： 
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其中，Et 為第 t 筆樣本之觀測值， tE 為第 t 筆樣本之

觀測值，n 為樣本數。 
2.均方根誤差 (RMSE) 

RMSE 透過對誤差平方後取平均再開根號，對較

大之誤差給予較高權重。RMSE 值愈小表示模型整體

預測精度愈高，特別能反映模型在大誤差控制上的能

力。其計算公式如下： 
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3.相關係數 (CC) 
CC 衡量觀測值與推估值之間的線性相關強度，

範圍為[-1,1]，其中越接近 1 表示正相關性越高，模型

能較好掌握資料趨勢。其計算公式如下： 
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其中， E 與 Ê 分別為觀測值與推估值之平均值。 
4.效率係數 (CE) 

CE 評估模型預測相較於以觀測均值作為預測值

的改善幅度。其值域為 (−∞, 1]，當 CE = 1 代表模型

預測完全吻合觀測值；CE = 0 表示模型表現與直接取

平均值相當；若 CE < 0 則表示模型表現不如平均值。

其計算公式如下： 
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格網格氣象因子資料，進行模型建構前之資料特性分
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所列統計量 (平均值、標準差、最大值與最小值) 係以

日尺度計算所得，用以呈現各測站資料分布特性與變

異情形。 
整體而言，皿蒸發量於各測站間呈現明顯空間差

異。平地測站 (如田中站與嘉義站) 之日平均蒸發量

分別為 4.3 mm/day 與 3.7 mm/day，顯著高於高海拔測

站如玉山站與阿里山站之 2.1 mm/day 與 1.6 mm/day，
顯示海拔高度對蒸發量具明顯影響。 

日射量各測站平均值介於 16.0 至 21.6 MJ/m²之
間，其中平地測站日射量略高，而山區測站如玉山站

則相對偏低。然而從標準差觀察，山區測站日射量變

異幅度普遍大於平地測站，可能反映山區受地形遮蔽

與雲量變化之影響較為顯著。溫度方面，平均氣溫亦

隨海拔變化明顯，範圍介於 8.3 °C 至 25.6 °C，溫度為

蒸發能量驅動之主要控制因子之一。 
相對濕度平均值介於 64.2%至 86.7%之間，其中

高海拔測站濕度普遍較高，符合高山地區常態濕潤環

境特性。氣壓則呈現典型隨海拔遞減趨勢，嘉義站均

壓達 1009.4 hPa，而玉山站僅約 685.0 hPa，顯示明顯

大氣壓力隨高程變化之特性。 
風速平均值介於 1.1 至 2.6 m/s 之間，整體差異性

相對較小。降雨量則呈現較大變異，各測站每日最大

降雨量介於 167.4 至 417.1 mm，且標準差顯示山區測

站變異較高，反映在地形抬升作用下，降雨量於不同

測站間呈現明顯差異。 
進一步以皮爾森相關係數檢驗各氣象因子與皿蒸

發量間之線性關係，結果如圖 4 所示。整體而言，日

射量與蒸發量呈現高度正相關，顯示輻射能量為驅動

蒸發現象之主要控制因子；氣溫與蒸發量呈顯著正相

關，高溫情況下通常伴隨較高之蒸發量。相對濕度與

降雨量兩項因子均與蒸發量呈顯著負相關，此現象反

映當大氣濕潤或降雨時，空氣趨於飽和狀態，進而抑

制水分子由液相轉換至氣相的潛熱傳輸機制。氣壓與

風速兩項因子分別與蒸發量呈偏弱之正相關。風速較

高時可促進液面水分逸散，故與蒸發量呈正相關符合

常理。至於氣壓，雖多數文獻指出其與蒸發量間為負

相關，惟本研究所建立之補遺模式涵蓋多處海拔高度

不同之測站，於高海拔地區，氣壓偏低，且日射量與 
 

表 2 各氣象站因子統計特性 

 
統計量 

平均值 標準差 最大值 最小值 平均值 標準差 最大值 最小值 
測站 皿蒸發量 (mm) 日射量 (MJ/m2) 
田中 4.3 1.7 9.4 0.1 21.6 5.9 30.2 0.9 
嘉義 3.7 1.5 8.3 0.1 21.1 5.4 30.0 1.0 

阿里山 1.6 0.9 6.5 0.0 16.0 6.4 31.8 0.6 
玉山 2.1 1.5 8.0 0.0 16.4 8.4 33.1 0.9 

日月潭 2.4 1.3 7.2 0.0 20.2 5.4 30.5 0.8 
測站 平均溫度 (℃) 相對溼度 (%) 
田中 24.9 4.8 32.0 9.6 68.8 7.4 91.9 36.3 
嘉義 25.6 4.8 32.3 10.5 64.2 7.3 88.3 32.1 

阿里山 12.0 3.4 17.9 1.1 81.4 11.3 99.2 31.6 
玉山 8.3 1.5 11.2 3.0 86.7 9.6 99.1 50.7 

日月潭 20.7 3.9 27.4 7.4 72.8 9.8 97.8 36.3 
測站 氣壓 (hPa) 平均風速 (m/s) 
田中 1008.1 5.3 1022.7 989.5 2.6 0.8 7.1 1.0 
嘉義 1009.4 5.3 1023.4 990.6 2.1 0.7 7.1 0.6 

阿里山 784.8 2.5 791.4 772.2 1.1 0.4 4.0 0.4 
玉山 685.0 2.0 689.3 674.7 1.5 0.5 7.0 0.6 

日月潭 932.2 4.1 943.1 916.2 1.2 0.2 3.1 0.4 
測站 降雨量 (mm) 

 

田中 3.0 13.2 196.1 0.0 
嘉義 2.6 11.0 203.8 0.0 

阿里山 8.2 21.1 417.1 0.0 
玉山 11.2 27.2 357.0 0.0 

日月潭 5.5 14.2 167.4 0.0 
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圖 4 皿蒸發量與氣象因子之皮爾森相關係數矩陣 

 
平均氣溫亦相對較低，導致蒸發量亦較小，從而使兩

者在整體資料中呈現正相關趨勢。 
綜合上述統計摘要與相關性分析結果可知，

TReAD 雖為經由氣象模式動力降尺度產製之再分析

氣象資料，並非直接由地面測站觀測所得，然其與地

面測站所量測之皿蒸發量仍具一定程度之相關性，且

其變異趨勢亦與蒸發相關物理機制相符，初步顯示其

具作為資料補遺模型輸入特徵之應用潛力。 
 

3.2 建模與補遺成果 
 
本研究比較六種集成學習方法於不同缺測比例下

之皿蒸發量資料補遺性能，模型建模 (訓練) 與補遺 
(測試) 表現評估指標結果彙整如圖 5A 與圖 5B 所示，

並輔以補遺成果散佈圖 (圖 6A、圖 6B)進行綜合討論。 
整體而言，各集成學習方法於建模 (訓練) 階段

均展現穩定之預測能力，其中以 RF 表現最佳，於不

同缺漏比例條件下，其 MAE 值介於 0.656 至 0.716 
mm，顯示具備良好的學習能力與強健性。相較之下，

AdaBoost於訓練階段MAE 值介於 0.985至 0.990 mm，
整體預測誤差高於其他模型，顯示其學習能力略遜於

其他集成學習方法。 
在補遺 (測試) 階段表現方面，RF 仍維持最佳預

測表現，MAE 介於 0.880 至 0.907 mm。LightGBM、

CatBoost、GB 及 XGBoost 表現相近，MAE 值介於

0.885 至 0.913 mm，整體預測精度良好，顯示仍可有

效應用於資料補遺任務。相較之下，AdaBoost 於補遺

階段仍表現較差，整體誤差指標(MAE 與 RMSE)均
高於其他模型。進一步以 CC 與 CE 檢視模型整體擬

合能力與強健性。各模型 CC 值普遍維持在 0.727 以

上，CE 值則介於 0.504 至 0.803 之間，顯示整體模型

具良好擬合能力。另觀察缺測比例由 5%提升至 50%
之表現差異，可發現各模型誤差並未顯著上升，主因

為本研究整體資料筆數已逾六千筆，即便在 50%缺漏

條件下，仍保有超過三千筆有效訓練資料，使模型仍

可有效捕捉輸入特徵與蒸發量間之非線性關係，展現

優異之泛化能力與穩定性。 
此外，圖 6A 與圖 6B 呈現各集成學習方法於不同

缺測比例下之補遺散佈結果。整體而言，大多數模型

預測值與實測值分布集中於 1:1 參考線附近，整體擬

合良好。惟於高蒸發量區間 (> 6 mm/day) 部分樣本仍

出現偏離趨勢，顯示在極端高蒸發條件下模型預測誤 
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者在整體資料中呈現正相關趨勢。 
綜合上述統計摘要與相關性分析結果可知，

TReAD 雖為經由氣象模式動力降尺度產製之再分析

氣象資料，並非直接由地面測站觀測所得，然其與地

面測站所量測之皿蒸發量仍具一定程度之相關性，且

其變異趨勢亦與蒸發相關物理機制相符，初步顯示其

具作為資料補遺模型輸入特徵之應用潛力。 
 

3.2 建模與補遺成果 
 
本研究比較六種集成學習方法於不同缺測比例下

之皿蒸發量資料補遺性能，模型建模 (訓練) 與補遺 
(測試) 表現評估指標結果彙整如圖 5A 與圖 5B 所示，

並輔以補遺成果散佈圖 (圖 6A、圖 6B)進行綜合討論。 
整體而言，各集成學習方法於建模 (訓練) 階段

均展現穩定之預測能力，其中以 RF 表現最佳，於不

同缺漏比例條件下，其 MAE 值介於 0.656 至 0.716 
mm，顯示具備良好的學習能力與強健性。相較之下，

AdaBoost於訓練階段MAE 值介於 0.985至 0.990 mm，
整體預測誤差高於其他模型，顯示其學習能力略遜於

其他集成學習方法。 
在補遺 (測試) 階段表現方面，RF 仍維持最佳預

測表現，MAE 介於 0.880 至 0.907 mm。LightGBM、

CatBoost、GB 及 XGBoost 表現相近，MAE 值介於

0.885 至 0.913 mm，整體預測精度良好，顯示仍可有

效應用於資料補遺任務。相較之下，AdaBoost 於補遺

階段仍表現較差，整體誤差指標(MAE 與 RMSE)均
高於其他模型。進一步以 CC 與 CE 檢視模型整體擬

合能力與強健性。各模型 CC 值普遍維持在 0.727 以

上，CE 值則介於 0.504 至 0.803 之間，顯示整體模型

具良好擬合能力。另觀察缺測比例由 5%提升至 50%
之表現差異，可發現各模型誤差並未顯著上升，主因

為本研究整體資料筆數已逾六千筆，即便在 50%缺漏

條件下，仍保有超過三千筆有效訓練資料，使模型仍

可有效捕捉輸入特徵與蒸發量間之非線性關係，展現

優異之泛化能力與穩定性。 
此外，圖 6A 與圖 6B 呈現各集成學習方法於不同

缺測比例下之補遺散佈結果。整體而言，大多數模型

預測值與實測值分布集中於 1:1 參考線附近，整體擬

合良好。惟於高蒸發量區間 (> 6 mm/day) 部分樣本仍

出現偏離趨勢，顯示在極端高蒸發條件下模型預測誤 
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圖 5A 各集成學習方法於不同資料缺漏比例建模成果評鑑指標 

 

 

圖 5B 各集成學習方法於不同資料缺漏比例補遺成果評鑑指標 
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圖 6A 各集成學習方法於不同資料缺漏比例補遺成果散佈圖 

 
圖 6B 各集成學習方法於不同資料缺漏比例補遺成果散佈圖 
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圖 6A 各集成學習方法於不同資料缺漏比例補遺成果散佈圖 

 
圖 6B 各集成學習方法於不同資料缺漏比例補遺成果散佈圖 
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差相對較大。進一步觀察 AdaBoost 模型之補遺行為，

可見其於低缺測比例下，即存在高值低估與低值高估

現象，當缺漏比例提升時，AdaBoost 模型之散佈偏離

1:1 參考線現象進一步加劇，顯示其於高缺測情境下之

補遺穩定性與泛化能力相對受限。 
綜合以上分析結果可得，本研究集成學習方法建

構補遺模式具備良好之準確性與強健性，並可適用於

高缺測比例資料補遺任務。其中以 RF 於整體預測精

度與穩定性表現最為優異，可作為後續皿蒸發量資料

補遺應用之優選模型。 
 

3.3 殘差分布分析與強健性檢討 
 
在前節建模與補遺成果分析中可觀察，各集成學

習方法為基礎之模型多可維持一定水準之補遺表現，

其中以 RF 表現最佳，無論在不同缺漏比例下皆維持

最低誤差指標；而 AdaBoost 整體誤差指標相對偏高，

顯示其補遺穩定性較易受到資料特性影響。因此，本

節進一步選取表現最佳之 RF 與表現相對較差之

AdaBoost 作為代表模型，針對不同缺漏比例下各測站

之補遺誤差分布進行比較分析，以檢視兩者之泛化能

力與強健性。 
針對五個測站於缺漏比例 5% 與 50% 條件下，

繪製其殘差機率分布圖，分別如圖 7 與圖 8 所示。整

體而言，RF 在各測站之殘差分布普遍呈現以零為中心

之對稱型態，顯示整體預測結果未出現系統性偏移。

此外，無論在缺漏比例 5%或 50%條件下，RF 於各測

站之殘差分布均維持穩定，未隨缺漏比率提升而產生

明顯偏移，展現其強健之補遺能力。 
日月潭站整體表現與平地測站 (田中站與嘉義

站) 趨近，在低缺漏比例時，兩模型於中海拔條件下

皆能維持穩定預測表現 (圖 7)。然而，當缺漏比例提

升至 50% (圖 8) 時，AdaBoost 於日月潭站亦呈現殘

差分布偏向負值之情形，顯示其穩定性易隨缺漏比例

提升而下降，對樣本量之依賴性較高。 
整體而言，RF 無論在不同測站或缺漏條件下，皆

能穩定維持低誤差與對稱分布，展現優異之空間泛化

能力與強健性，適合作為皿蒸發量補遺任務之優選模 
 

 
圖 7 於缺漏比例 5% 條件下各測站殘差機率分布圖 
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圖 8 於缺漏比例 50%條件下各測站殘差機率分布圖 

 
型；相較之下，AdaBoost 補遺穩定性則較受資料樣本

分布特性影響，對資料變異性與缺漏比例之敏感度較

高，整體模式強健性相對不足。 
 

四、結論 
 
本研究針對皿蒸發量觀測資料補遺問題，整合高

時空解析度之臺灣歷史氣候重建資料與集成學習方

法，建立一套具備高精度與強健性的蒸發量補遺模式。

透過五個具備皿蒸發觀測之中央氣象署測站為研究區

域，系統性探討不同集成學習方法為基礎之模型於多

樣缺測情境下之補遺表現，獲得以下主要結論： 
1. 資料特性分析結果顯示：皿蒸發量及氣象因子於空

間尺度具顯著差異，蒸發量主要受日射量與氣溫控

制，與相對濕度及降雨量呈現負相關。高海拔測站

因長期低溫結冰等因素，蒸發觀測資料缺漏比例較

高，顯示對補遺模式之表現具挑戰性。 
2. 模型補遺能力評估顯示：六種集成學習方法多展現

良好補遺能力，其中以 RF 整體表現最佳，無論在

建模階段或補遺階段，於不同缺漏比例下均維持最

低誤差與最高相關性。LightGBM、CatBoost、GB
及XGBoost等學習法亦展現良好表現，而AdaBoost
在整體誤差指標與強健性上相對較弱。 

3. 缺漏比例穩定性分析結果指出：即便缺測比例提升

至 50%，各模型補遺誤差並未明顯上升，顯示集成

學習方法對樣本數目具良好適應性。隨資料量增

加，模型可有效學習氣象變數與蒸發量間之非線性

關係，展現良好之泛化能力。 
4. 殘差分布與空間強健性分析發現：RF 於各測站之

殘差分布皆穩定對稱，補遺表現不受地形高低或樣

本缺漏比例顯著影響，展現高度之強健性；反觀

AdaBoost 於高海拔或高缺測情境下易出現負向偏

移，對資料變異性與樣本量變動相對敏感。 
5. 研究應用價值：本研究證實結合 TReAD 重建資料

與集成學習方法，可有效補足現有皿蒸發量觀測缺

漏問題，未來可進一步擴展應用於無測站或偏遠地

區之蒸發量推估任務，提升區域水文資料完整性，
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圖 8 於缺漏比例 50%條件下各測站殘差機率分布圖 

 
型；相較之下，AdaBoost 補遺穩定性則較受資料樣本

分布特性影響，對資料變異性與缺漏比例之敏感度較

高，整體模式強健性相對不足。 
 

四、結論 
 
本研究針對皿蒸發量觀測資料補遺問題，整合高

時空解析度之臺灣歷史氣候重建資料與集成學習方

法，建立一套具備高精度與強健性的蒸發量補遺模式。

透過五個具備皿蒸發觀測之中央氣象署測站為研究區

域，系統性探討不同集成學習方法為基礎之模型於多

樣缺測情境下之補遺表現，獲得以下主要結論： 
1. 資料特性分析結果顯示：皿蒸發量及氣象因子於空

間尺度具顯著差異，蒸發量主要受日射量與氣溫控

制，與相對濕度及降雨量呈現負相關。高海拔測站

因長期低溫結冰等因素，蒸發觀測資料缺漏比例較

高，顯示對補遺模式之表現具挑戰性。 
2. 模型補遺能力評估顯示：六種集成學習方法多展現

良好補遺能力，其中以 RF 整體表現最佳，無論在

建模階段或補遺階段，於不同缺漏比例下均維持最

低誤差與最高相關性。LightGBM、CatBoost、GB
及XGBoost等學習法亦展現良好表現，而AdaBoost
在整體誤差指標與強健性上相對較弱。 

3. 缺漏比例穩定性分析結果指出：即便缺測比例提升

至 50%，各模型補遺誤差並未明顯上升，顯示集成

學習方法對樣本數目具良好適應性。隨資料量增

加，模型可有效學習氣象變數與蒸發量間之非線性

關係，展現良好之泛化能力。 
4. 殘差分布與空間強健性分析發現：RF 於各測站之

殘差分布皆穩定對稱，補遺表現不受地形高低或樣

本缺漏比例顯著影響，展現高度之強健性；反觀

AdaBoost 於高海拔或高缺測情境下易出現負向偏

移，對資料變異性與樣本量變動相對敏感。 
5. 研究應用價值：本研究證實結合 TReAD 重建資料

與集成學習方法，可有效補足現有皿蒸發量觀測缺

漏問題，未來可進一步擴展應用於無測站或偏遠地

區之蒸發量推估任務，提升區域水文資料完整性，
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並有助於支持水資源規劃、灌溉管理與氣候變遷風

險評估等應用領域。 
綜合而言，本研究所提出之集成學習補遺模式兼

具高精度、強健性與應用彈性，具備實務應用潛力。

未來建議可進一步擴大樣本時間序列、引入其他區域

或氣候條件下之測試資料，並結合物理機制與資料驅

動模式，以提升模型於極端氣候條件下之適用性與解

釋能力。 
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