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ABSTRACT

Evaporation plays a crucial role in the hydrological cycle as a key process of energy and mass
exchange, and has significant implications for agricultural irrigation and water resource
management. However, direct evaporation observations are often incomplete due to limitations in
instrumentation, operational constraints, and environmental conditions. To improve the
completeness of evaporation datasets, this study integrates ensemble learning approaches with
Taiwan ReAnalysis Downscaling Data (TReAD) to develop a pan evaporation data imputation
model. The dataset comprises pan evaporation observations from five Central Weather
Administration (CWA) stations in Taiwan, along with corresponding TReAD meteorological data.
Six meteorological variables—solar radiation, wind speed, air temperature, relative humidity, air
pressure, and precipitation—were selected as model inputs. Six ensemble learning algorithms,
including Random Forest (RF), Adaptive Boosting (AdaBoost), Gradient Boosting (GB), Extreme
Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), and Categorical
Boosting (CatBoost), were employed for model training and imputation. The results indicate that
RF consistently demonstrated the best imputation performance across various missing data
scenarios, with mean absolute errors (MAE) ranging from 0.880 to 0.907 mm/day, and maintained
robust performance across different stations and high missing rates. Residual analyses further
confirmed the stability and generalization capability of RF compared to other models. The ensemble
learning-based imputation model developed in this study exhibits high accuracy and stability, and
can be applied to pan evaporation data recovery and long-term hydrometeorological database
construction, thereby enhancing the reliability and completeness of datasets for water resource

planning, irrigation management, and climate risk assessment.
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