利用温度日变化推算河床入渗流速

Using Diurnal Temperature Time Series to Determine the Streambed Percolation Velocity

嘉南藥理科技大學 溫泉產業研究所 副教授

陳 文 福*

Wen-Fu Chen

中央地質調查所 技士

Min-Hsiang Chang

經濟部

經濟部 中央地質調查所 科長

張 閔 翔

黃智昭 Chih-Chao Huang

經濟部 中央地質調查所 組長

王詠絢

Yun-Shuen Wang

經濟部 中央地質調查所

副所長

江崇榮

Chung-Jung Chiang

摘 要

河床入滲是地下水主要的補注來源之一,以溫度法量測河床入滲為一常用的方 法,在河床面及河床下至少埋設兩處溫度記錄器,使用至少兩測點的溫度時間序列, 然後以解析或數值解求得入滲流速。常用的地下水傳輸及傳熱的數值模式如 VS2DH、SUTRA或TOUGH2等,但都並非專供求解河床入滲率之用,主要是用來 模擬地下水之二維至三維的熱能傳輸問題。本研究則使用一維熱傳公式,假設只有 垂直向的對流與傳導,不考慮水平方向,撰寫求解的數值程式,只要將實測的河床 面及河床下兩組溫度數據代入,便能自動求解。因爲假設爲一維之熱傳問題,所以 不需事先建構二維水流模式。而且本程式以每日的溫度變化爲計算單位,所以如果 有多天數據,便可求出每天的河床入滲流速,對於河流的入滲型態能有更深入的認 識。

本研究並在彰化縣二水鎮濁水溪支流進行實測,發現河床入滲流速平均約2.63 × 10⁻⁵ m/s,推算垂直水力傳導係數平均約3.27 × 10⁻⁵ m/s,與前人研究的水力傳導係 數約10⁻³ m/s 相差甚大,且入滲流速也與河流水位高低沒有關係,推測乃因河床面

*通訊作者,嘉南藥理科技大學溫泉產業研究所副教授,71710臺南市仁德區保安里二仁路一段 60號, chenwenfu@mail.chna.edu.tw

的阻塞造成入滲流速與水力傳導係數的降低。本河段的地下水面可能深達河床下 20-30 m,加上河床面有阻塞層,可能造成所謂「不連通河」。

關鍵詞:溫度法、河床、入滲流速、阻塞層。

ABSTRACT

Streambed percolation is one of the most important routes for groundwater recharge. Among many methods, using diurnal temperature time series in streambed to determine the percolation velocity is one the most using methods. At least two temperature logs should be installed, one in the streambed of 10-100cm in depth and one on the streambed surface. Percolation velocity then is calculated from those temperature time series by analytical or numerical procedures. Several numerical codes, e.g. VS2DH, SUTRA, TOUGH2, were developed for 2D or 3D heat transport simulation and also were using for streambed percolation velocity calculation, but, with great complexity. In this research, we simplify the calculation by developing new computer codes that solve the 1D heat transfer equation. Using the diurnal temperature data, we can calculate the percolation velocities of each day. With more percolation velocities data there will be have more understanding for the river/groundwater interaction.

We also conducted a field test for studying the streambed percolation in a tributary of the Choshui stream, central Taiwan. Our data show that the average percolation velocity is about 2.63×10^{-5} m/s and with a vertical hydraulic conductivity of 3.27×10^{-5} m/s. The calculated hydraulic conductivity is too small than values of about 10^{-3} m/s from the previous studies. In our data there is no correlation between percolation velocity and river water level. We suggest that the streambed was clogging of the percolation surface and resulting reduction in percolation velocity and hydraulic conductivity. The studying stream section could be a "disconnected stream" because of the groundwater table is probably as deep as 20-30 m below the streambed and with a clogging layer deposited on it.

Keywords: Temperature method, Streambed, Percolation velocity, Clogging layer.

河床入滲是地下水主要的補注來源之一,目 前研究河床入滲的方法有許多,例如:河道流量 平衡法、入滲計、基流平衡計算、溫度法、及同 位素法等(Scanlon *et al.*, 2002; Anderson, 2005)。 河道流量平衡法需在河流設立流量站(通常為短 期內),比較相鄰兩流量站的河川流量,再加減蒸 發量及人為引用/流入量,即可算出河床入滲/出 滲之量(Lerner, 1997; Rushton, 1997)。入滲計法需 在河床安裝入滲計,入滲計的下方為一容器、上 方需回填河床質,河水入滲至容器,紀錄一段時 間及單位面積,即可求出入滲量(Kraatz, 1977; Lee and Cherry, 1978)。基流平衡計算則類似河道 流量平衡法,但使用較長期的、多年的河川流量 數據,可估計某段河道的出滲量(Rutledge, 1997; Halford and Mayer, 2000)。同位素法因不同來源 的水其海拔高度不同(雨水、河水、湖水等)、其 氫氧同位素濃度比例各異,假設其不同的比例混 合,來推測地下水的來源百分比(Taylor *et al.*,

圖1 (A)假設的兩天溫度時間序列,有兩個測量
 點,ΔA 為振幅差、Δψ 為溫度延遲:(B)溫度
 量測儀器,其一位於河床面、另一位於河床
 下

1989; 1992) •

各種方法各有優劣、並無定論。其中具有方 便性、準確度且儀器不貴的溫度法為一常用的方 法,其作法為,在河床面及垂直下方的河床下至 少埋設兩處溫度記錄器,河床面的溫度向下傳遞 時,因熱傳導及對流的影響,在河床下的溫度, 其振幅及溫度序列會有所改變,利用其振幅差 (ΔA)及溫度延遲(Δψ)可推算入滲流速(圖 1)。 其控制方程式如下式(Suzuki, 1960; Stallman, 1963, 1964, 1965; Constantz, 2008)

 $(\kappa/\rho C)(\partial^2 T/\partial Z^2) - q(\rho_w C_w/\rho C) (\partial T/\partial Z) = \partial T/\partial t$(1)

公式的左邊第1項為熱傳導項, κ 為熱傳導 係數(thermal conductivity)、ρ 飽和河床質的密度 (saturated streambed density)、C 飽和河床質比熱 (saturated specific heat capacity)、T 溫度、Z 為垂 直方向。 κ/ρ C 項又稱為熱擴散係數(α , thermal diffusivity),熱擴散係數的值通常介於 10⁻⁶ 至 10⁻⁷ m²/s 之間。左邊第2項為對流項,q 水體入 滲率(infiltration flux)為河床上水體往下的流速, ρ_w C_w為水的密度及比熱,最右項中的t為時間。

入滲率(或入滲流速)有兩種易於混淆,q 為水體入滲率(m/s):為河床上之水體往下的流速 (尙未流入河床),通常流徑為直線。當水流流入 河床質中,因截面積變小、流速變快,但流徑因 顆粒阻擋、也變得歪曲,此時在河床質中的流 速,取垂直兩點的直線距離除以時間,在本研究 中定義為河床入滲流速 v (streambed percolation velocity),此流速相當於在地下水相關研究中的 平均地下水線性流速(average linear groundwater velocity)。兩者關係如下式

q = a v(2)

q 為水體入滲率(m/s)、v 河床入滲流速、係 數 a 為河床的有效孔隙率(能連通的孔隙率)。

使用至少兩量測點的溫度時間序列,有些學 者使用解析解(Suzuki, 1960; Silliman and Booth, 1993; Silliman *et al.*, 1995; Hatch *et al.*, 2006; Keery *et al.*, 2007),或者數值模式來求入滲流速 (Niswonger and Prudic, 2003; Stonestrom and Constantz, 2003)。使用日溫度變化,其方法適用 性,最低可以求到入滲流速 2.3×10^7 m/s,若使 用年變化溫度,則可最低至 1.0×10^8 m/s。

常用的地下水傳輸及傳熱的數值模式有:美國地質調查所的 VS2DH (Healy and Ronan, 1996)、SUTRA (Voss, 1990)及美國勞倫斯國家實驗室 TOUGH2 (Pruess *et al.*, 1999)等。但這些模式都並非專供求解河床入滲率之用,主要是用來模擬地下水之二維至三維的熱能傳輸問題。若研究者使用上述的模式,須先建構二維的地下水流模式,將一段時間的河床面溫度數據代入,例如 Niswonger and Prudic (2003)使用 6 天的數據,然後調整河床質的水力傳導係數(hydraulic conductivity),使模擬的河床下溫度序列吻合(match)實測的溫度序列,此時的水力傳導係數,若配合實測的河川水位,即可求得河床入滲率。

本研究則將求解的過程簡化,首先撰寫求解 公式1的數值程式,只要將實測的河床面及河床 下兩組溫度數據代入,便能自動求解,不需事先 建構二維水流模式。而且本程式以每日的溫度變 化爲計算單位,所以如果有6天數據,便可求出 6 筆每天的河床入滲流速,可提供更多的入滲率 數據,對於河流的入滲型態能有更深入的認識。 本研究並於彰化縣二水鎭附近的濁水溪河道,進 行溫度法的實測,推算其河床入滲流速,並探討 濁水溪水流中攜帶大量的泥沙,造成河床表面及

圖 2 垂直向的網格,以中間網格(T_i)求解,熱傳只
 來自上層(T_{i-1})或下層(T_{i+1})網格,Δz 為網格的
 單位厚度,本研究設為 0.01 m

孔隙中的淤積,對於河床質水力傳導係數的影響。

二、研究方法

本研究發展的數值程式包括兩個:(1)程式 Therm_Diffusivity.exe 為不考慮流速,僅以溫度 求解地層之熱擴散係數:(2)程式 River_Infil_ Velocity.exe 需先假設孔隙率、河床質的熱傳導 性、密度及比熱等,然後以實測溫度求入滲速 度。兩程式的計算方式均以差分法解公式 1,模 擬假設為垂直向一維之熱傳導,共1m的土壤 (0 m為上邊界、1 m深為下邊界)、以每0.01 m 為一網格,共分成100 個網格(圖 2),時間間隔為 每秒一次,模擬時間為單日變化。只求解熱擴散 係數的情況,公式1可不考慮熱對流項,簡化為 公式 3 (熱擴散方程式):

 $\alpha(\partial^2 T/\partial Z^2) = \partial T/\partial t \qquad(3)$

簡化為圖 2 之網格,中間網格(溫度函數為 T_i^{n+1})為求解的網格,若時間間隔設為 n, Δz 為 單一網格的厚度,熱流來自上方(T_{i-1}^{n})或下方(T_{i+1}^{n}) 網格。公式 3 的有限差分式可寫為(Lam, 1994; Holman, 1992)

本程式的解法為,已知條件為單日變化之地 面溫度(此為上邊界溫度條件),半小時1點數據、

圖 3 本研究 Therm_Diffusivity 程式疊代求解的流 程

共需 48 點數據, 及地面下某一深度之溫度序列--也是 48 點數據(兩者皆為實測值)。輸入此兩列數 據及深度後, 程式自動以不同熱擴散係數代入, 目前設為1×10⁻⁷至1×10⁻⁵ m²/s, 每次代入一假 設的熱擴散係數, 可求得一模擬的地面下日溫度 變化曲線及其振幅,將模擬的振幅與實測振幅比 較, 差異越小者越接近眞實的熱擴散係數,將前 一次的逼近值, 再代入求解, 進行約數百次的疊 代, 即可求出最佳的熱擴散係數(圖 3)。

有兩條件為未知,第一為始初溫度為未知, 模擬程式須反覆跑該日變化(約5天),以形成穩 定的地溫分布作為始初條件(Niswonger and Prudic, 2003);第二為深度1m的下邊界溫度未知,但下 邊界的溫度可由兩項已知來求,即比較某深度的 振幅及平均溫度的實測與計算值。本程式將下邊 界溫度設為 10-30℃ (台灣平地地區 1 m 深處的 地溫範圍),熱擴散係數為 $1 \times 10^7 \cong 1 \times 10^5$ m²/s,每次代入一假設的熱擴散係數及假設的下 邊界溫度,可求得一模擬的地面下日溫度變化曲 線及其振幅,將模擬的振幅及日平均溫與實測值 比較,差異越小者越接近眞實的下邊界溫度,將 前一次的逼近值,再代入求解,共進行約300次 疊代,即可求出最佳的下邊界溫度。因為本研究 的溫度感測器解析度為 0.01℃, 逼近解在模擬與 實測的振幅差及下邊界溫度差均小於 0.001℃時 應可接受。使用本研究之 Therm Diffusivity.exe

圖 4 若溫度曰變化長期有漸升的趨勢,單曰變化 之波形為不對稱型,在數值計算時將有誤 差,將此序列的斜率校正零,可得到校正後 的對稱波形

程式推算熱擴散係數時,同時也可解出下部邊界 之溫度。

長期的日溫度變化序列常為溫度漸增或漸減,取單日變化時為不對稱型,在數值解時會有誤差,因此須先將波形校正為對稱型(圖 4)。例如某地 2011 年 6 月 9 日之日變化,以地溫 0.26 m深度之數據,未校正前的數據,解出土壤之熱擴散係數 $\alpha = 6.45 \times 10^7 \text{ m}^2/\text{s}$ 、實測與模擬之振幅誤差約 5.7 × 10^6 C ,但有明顯的溫度延遲誤差(圖 5A)。校正後的數據,解出土壤之熱擴散係數 $\alpha = 7.3 \times 10^7 \text{ m}^2/\text{s}$ 、振幅誤差更小、約 $3.8 \times 10^6 \text{ C}$ 、且沒有溫度延遲(圖 5B)。

同樣使用差分法解一維之公式 1,本研究自 行發展程式碼 River_Infil_Velocity.exe 以求最佳 之河川垂直入滲流速。本程式僅需要增加熱對流 項所造成的溫度改變,其餘熱擴散項的網格與時 間間隔等解法與前述相同。熱對流項 q(p_wC_w/pC) (∂T/∂Z) 改 寫 成 差 分 方 程 式 爲 av(p_wC_w/pC) (T_{i-1}-T_i/Δz)。爲了將河床入滲流速 v 當成求解目 標,河床質的孔隙率、飽和熱傳導係數、飽和密 度、飽和比熱及下邊界溫度需爲已知(或使用假設 値)。前人研究中、水的比熱爲 4180 J/kg℃及密 度 1000 kg/m³。本程式輸入單日之地面溫度(河床 溫度)及地面下某一深度之溫度序列後,程式自動 以不同入滲流速代入,目前設爲 1 × 10⁻³至 1 ×

圖 6 桃園縣觀音茶改場 10 月的日溫度曲線(摘錄 自 Tsai *et al.*, 2008)

10⁻⁷ m/s,每次代入一假設的入滲流速,可求得一 模擬的地面下日溫度變化曲線及其振幅,將模擬 的振幅與實測振幅比較,差異越小者越接近真實 的入滲流速,將前一次的逼近值,再代入求解, 共進行數十次疊代,即可求出最佳的入滲流速。

程式驗證:(1)由地面-地下溫度之時間序 列,不考慮地下水之流速,求熱擴散係數。引用 兩篇文獻(Tsai et al., 2008; Munz et al., 2010)之原 始數據,以本程式之數值解與文獻中之解析解比 對。Tsai et al. (2008)研究農業氣象站 1994-1998 年的土壤地溫數據,其中桃園縣觀音茶改場,土 壤性質爲黏土及粉砂性黏土,報告中附有詳細的 日溫變化數據。本文取其中 10 月份的 0.05 m 及 0.30 m 地溫日變化數據(圖 6),0.05 m 深的地溫 最低約 23.40℃、最高約 25.10℃,0.30 m 深的 地溫最低約 24.49℃、最高約 24.74℃,振幅比 爲 0.15 (深部振幅除以淺部振幅 A_{0.30}/A_{0.05})。將 0.05 m 地溫當成上邊界條件,始初條件假設爲 25℃,然後以 0.05 m 地溫的數據(上邊界),計

數據來源	文獻之熱擴散係數 m ² /s	本研究之熱擴散係數 m ² /s	文獻之下邊界溫度 ℃	本研究之下邊界溫度 ℃	
Tsai et al., 2008	6.23×10^{-7}	6.51 × 10 ⁻⁷	25.5	25.8	
Munz et al., 2010	11.9×10^{-7}	14.5×10^{-7}		21.19	
	文獻之入滲流速 m/s	本研究之入滲流速 m/s			
Ronan et al., 1998	1.38×10^{-5}	1.27×10^{-5}	12-13	12.5	
Keery et al., 2007	$2.9-6.4 \times 10^{-6}$	5.72 × 10 ⁻⁶		6.0	
Silliman et al., 1995	8.3-83 × 10 ⁻⁷	4.7×10^{-7}		20.0	

表1 程式驗證結果

---文獻中無提供

算其下方距離 0.25 m的日溫度曲線,與實測的 0.30 m 地溫比較(0.05 m 與 0.30 m 的間隔為 0.25 m),則可求出土壤之熱擴散係數及下邊界 溫度。Tsai *et al.* (2008)以解析解求出的土壤熱 擴散係數為 6.23×10^{-7} m²/s,下邊界 1 m 之地溫 實測値為 25.5° C,本程式之數値解為 6.51×10^{-7} m²/s,下邊界 1 m 之地溫計算値為 25.80° C,解 析解與本研究之數値解相當一致(表 1)。

Munz et al. (2010)在德國 Leipzig 市的實驗 場,2010 年 6-10 月以石英砂進行入滲率的溫度 試驗,其中埋深 0.015 m 與 0.365 m 的地溫數據 有詳細的呈現,在入滲率為零時,0.015 cm 深的 地溫最低約 20.0°C、最高約 28.0°C,0.365 m 深 的地溫最低約 22.5°C、最高約 23.8°C。將 0.015 m 地溫當成上邊界條件、始初條件設為 25°C,然 後以 0.015 m 地溫(上邊界),計算其下方距離 0.35 m 的日溫度曲線,與實測的 0.365 m 地溫比 較,求熱擴散係數及下邊界溫度。石英砂熱擴散 係數之解析解為 11.9 × 10⁻⁷ m²/s,本程式之數値 解為 14.5 × 10⁻⁷ m²/s,下邊界溫度之數値解為 21.19°C。本程式之數値解與前人之解析解相差並 不大。

(2)由地面-地下溫度之時間序列,若已知熱 傳導係數、河床質密度、河床質比熱、孔隙率, 即可求河床入滲流速,以三個流速(分別為 10⁻⁵、10⁻⁶、及 10⁻⁷ m/s)不同之現地研究數據驗 證之。其一、Ronan *et al.* (1998)在美國內華達州 Vicee 河的現地入滲與溫度試驗,該實驗之 1994 年 5 月 24 日的日溫度序列,河床面之日溫度為 8-23℃,下邊界 1m 深之地溫為 12-13℃,埋深 0.5 m的日溫度為 13-17℃。該研究以數值法求入 滲流速,以 VS2DH 軟體模擬入滲,假設條件為 河床質(為沖積扇的礫石與砂沉積)的熱傳導係數 為 2.3 W/m℃、密度為 1770 kg/m³、比熱為 1500 J/kg℃、孔隙率為 0.3,求得河床入滲流速約為 1.38×10⁻⁵ m/s。本研究以實測之河床面日溫度為 上邊界溫度,下邊界溫度與始初溫度皆設為 12.5℃,求出河床入滲流速為 1.27×10⁻⁵ m/s,本 程式之數值解與前人之解析解相當一致。

其二、Keery *et al.* (2007)在英國 Shropshire 的 Tern 河的現地入滲與溫度試驗,該實驗 T1 點 之 2005 年 7 月 8 日的日溫度序列,河床面之日 溫度為 15-17℃,下邊界 1 m 深之地溫未知,埋 深 0.20 m 的日溫度為 14-15℃。該研究以解析法 求入滲流速,假設條件為河床質(未固結的礫石 與砂)的熱傳導係數為 1.4 W/m℃、密度為 1990 kg/m³、比熱為 2072 J/kg℃、孔隙率為 0.4,求得 河床入滲流速約為 2.9-6.4×10⁶ m/s。本研究以 實測之河床面日溫度為上邊界溫度,下邊界與始 初溫度皆設為 6℃,求出河床入滲流速為 5.72× 10⁶ m/s,本程式之數值解與前人之解析解相當一 致。

其三、Silliman et al. (1995)在美國 Indiana 州 的 Juday 溪的現地入滲與溫度試驗,該實驗之 1991 年 8 月 15 日的日溫度序列,河床面之日溫 度為 18.5-22℃,下邊界 1m 深之地溫未知,埋深 0.14 m 的日溫度為 19.5-20.5℃。該研究以解析法 求入滲流速,假設條件為河床質(未固結礫石、砂 及泥的冰河沉積)的熱傳導係數為 1.0 W/m℃、密 度為 1900 kg/m³、比熱為 1000 J/kg℃、孔隙率為

河床質/參數	熱傳導係數κ W/m℃	密度 ρ × 10 ³ kg/m ³	比熱 C kJ/kg℃	熱擴散係數 α×10 ⁻⁷ m ² /s	文獻
未固结飽和砂礫層	1.0-2.3	1.7-2.0	1.0-2.1	1.7-13.5	1
未固結飽和泥層	1.4-2.2	1.4-2.0	1.7-3.6	2.4-5.3	2 \ 3
未固結飽和砂層	1.4-2.2	1.7-2.3	1.4-2.6	3.9-9.8	2 \ 3
未固結飽和砂礫層	2.0	1.9	1.4	7.3	3
水	0.6	1.0	4.2	1.4	

表 2 熱傳導相關係數

文獻來源: 1. Ronan et al. (1998), Keery et al. (2007), Silliman et al. (1995); 2. Stonestrom and Blasch (2003); 3. Lapham (1989)

熱傳導係數κ 比熱 C 熱擴散係數 入滲流速 密度 p 地點/參數 $\alpha \times 10^{\text{--}7}\,m^2\!/s$ $\times 10^3 \text{ kg/m}^3$ W/m°C kJ/kg°C m/s $< 1.0 \times 10^{-7}$ Juday-1 1.0 1.7 1.0 5.9 Juday-2 1.0 2.3 $8.9 imes 10^{-6}$ 2.6 1.7 Juday-3* 4.7×10^{-7} 1.0 1.9 1.0 5.0 Tern-1 1.4 1.7 1.0 8.2 7.1×10^{-7} 9.3×10^{-6} Tern-2 1.4 2.3 2.3 2.6 Tern-3* 5.7×10^{-6} 1.4 1.99 2.07 3.4 Vicee-1 2.3 13.5 $8.0\times10^{\text{-}6}$ 1.7 1.0 Vicee-2 2.3 2.6×10^{-5} 2.3 2.6 3.8 Vicee-3* 2.3 1.77 1.50 8.7 1.3×10^{-5}

表 3 各種假設河床質之飽和熱傳導係數、密度、比熱之不確定性分析

註*爲原文獻中之假設條件

0.3,求得河床入滲流速約為 8.3×10^8 m/s 至 8.3×10^{-7} m/s 之間。本研究以實測之河床面日溫度為上邊界溫度,下邊界與始初溫度皆設為 20° C,求 出河床入滲流速為 4.7×10^{-7} m/s,本程式之數値 解與前人之解析解相當一致。

因為河床質的熱傳導係數、密度、比熱(熱擴 散係數=熱傳導係數/(密度×比熱))及孔隙率通常 爲假設値,當流速越低時、熱擴散的影響越大, 地下水流速低於 10^{-7} m/s 時,其影響溫度傳遞之 效應已低於熱擴散係數,而在流速 $10^{-6}-10^{-7}$ m/s 時,已經和熱擴散係數接近,故不確定性較大。 前人研究文獻中記載(Lapham, 1989; Stonestrom and Blasch, 2003),飽和未固結礫石砂層河床質 的密度約介於 $1.7-2.3 \times 10^3$ kg/m³,比熱約介於 1.0-2.6 kJ/kg°C(表 2)。

以上述三個地點的試驗為例,Juday 案例中 (表 3),依原研究假設所求得的入滲流速為4.7 × 10⁻⁷ m/s;若熱傳導係數為1.0 W/m℃不變,假設 密度及比熱為最小值 $1.7 \times 10^3 \text{ kg/m}^3 \text{ Z} 1.0 \text{ kJ/kg} C , 熱擴散係數則為 <math>5.9 \text{ m}^2/\text{s}$,此時求出的 入滲流速為< $1 \times 10^7 \text{ m/s}$:密度及比熱最大值 $2.3 \times 10^3 \text{ kg/m}^3 \text{ Z} 2.6 \text{ kJ/kg} C , 熱擴散係數 1.7 m^2/\text{s}$,此時求出的入滲流速為 $8.9 \times 10^6 \text{ m/s} \circ \text{由}$ 上可知, 入滲流速 $4.7 \times 10^7 \text{ m/s} \pm 10^6 \text{ m/s} \circ \text{h}$ 上可知, 入滲流速 $4.7 \times 10^7 \text{ m/s} \pm 10^6 \text{ m/s} \circ \text{h}$ 上可知, 入滲流速 $4.7 \times 10^7 \text{ m/s} \pm 10^6 \text{ m/s} \circ \text{h}$ 上可知, 大滲流速 $5.7 \times 10^7 \text{ m/s} \cong 8.9 \times 10^6 \text{ m/s} \circ \text{c}$ 間 \circ 同樣的估 計方法, Tern 案例的入滲流速應介於 $7.1 \times 10^7 \text{ m/s} \cong 9.3 \times 10^6 \text{ m/s} \circ \text{c}$ 間(原計算值為 $5.7 \times 10^6 \text{ m/s}$); Vicee 案例的入滲流速應介於 $8.0 \times 10^6 \text{ m/s}$ $\cong 2.6 \times 10^5 \text{ m/s} \circ \text{l}$ [原計算值為 $1.3 \times 10^5 \text{ m/s}$] \circ

本研究於二水鎮南邊濁水溪的支流,文昌橋 下進行實測,此地屬於濁水溪沖積扇的扇頂,河 床以礫石沉積爲主,礫石最大直徑可達 60 cm, 文昌橋下河床大部份時間爲有水狀態(圖 7)。濁 水溪由八卦山及斗六丘陵的隘口流出後進入扇 頂區,地下水的水位明顯下降,鄰近的二水觀測

圖 7 河床入滲之溫度測量站:(A)文昌橋之地理 位置,(B)現地照片。礫石直徑可達 60 cm, 2010 年 12 月枯水期

井,水位約在地面下40m,南岸最近的井為烏塗井,水位約在地面下30m,因此扇頂區的河段河水應有部分會垂直下滲,補注入地下(經濟部中央地質調查所,1999)。

本研究使用的儀器為自記式的荷蘭 Van Essen MiniDiver 型,可同時監測溫度及水壓,溫 度量測範圍 0-80℃、準確度 0.1℃、解析度 0.01 ℃;水壓量測範圍 0-10 m、準確度 1 cm、解析度 0.2 cm。MiniDiver 全長約 9 cm、金屬部分的長度 約 5 cm、直徑為 2.5 cm。本研究之測棒為直接埋 設於河床下,挖至預定深度後,將測棒橫躺在洞 中,再以先前挖出之河床質掩埋之。河床面之測 棒則直接橫放於河床上,但需以繩索固定、以防 被沖走。

三、結果與討論

2011 年 8-10 月之實驗結果如圖 8,河川水 位最高約 1.2 m、最低為乾枯狀態。河床溫度最 高可達 37℃、最低約 22℃,除了陰雨天外、溫 度皆有明顯的日變化。河床下 40 cm 之溫度最 高約 30℃、最低約 23℃。

以溫度求入滲率需要有下列的參數:飽和河 床質的密度(ρ)、飽和河床質比熱(C)、飽和熱擴 散係數(α)、水的密度(ρ_w)及比熱(C_w)。根據前人 研究(Lapham, 1989; Stonestrom and Blasch, 2003), 水的密度為 1 × 10³ kg/m³,比熱為 4.2 kJ/kg℃。

圖 8 文昌橋 2011 年 8-10 月之不同深度日溫度變 化。(A)河床水位最高約 120 cm、最低約乾枯 狀態:(B)溫度之日變化,T00 為河床表面溫 度,T40 為河床面下 40 cm 深之溫度,河床 表面的日溫度變化明顯較大

未固結飽和砂礫層的密度約 $1.9 \times 10^3 \text{ kg/m}^3$,比 熱約 1.4 kJ/kg C,熱擴散係數約為 $7.3 \times 10^{-7} \text{ m}^2/\text{s}$ (表 2)。

由以上假設參數及每日之日溫度變化(2011 年7月25日至10月4日),求出入滲流速如 表4。入滲流速最大為11.9×10⁵ m/s(8月2日)、 最小為1.13×10⁻⁵ m/s(9月11日),平均約為 2.63×10⁻⁵ m/s。改變熱擴散係數對入滲流速會有 一些影響,但因本研究區的入滲流速為10⁻⁵ m/s, 因此影響並不大。以7月25日數據爲例,若熱擴 散係數為10×10⁷ m²/s,則入滲流速約為 5.3×10^{-5} m/s;若熱擴散係數為 6×10^{-7} m²/s,入滲流速約 為 5.0×10^{-5} m/s;本研究假設熱擴散係數為 7.3×10^{-7} m²/s,入滲流速為 5.25×10^{-5} m/s(圖9)。

在水力傳導係數不變的情況下,根據達西定 律,水壓差越大、入滲流速應該越大。但實測結 果發現水壓差(河床表面之壓力與河床下 40 cm 處之壓力差)與入滲流速並沒有明顯成正比 (圖 10)。推測應是泥砂沉澱堵塞入滲孔隙,導致 入滲流速降低。現場實測發現高水位時期,8 月 8 日至 9 月 1 日,河流水位高約 80-120 cm,河水 流速約 1-2 m/s,河水含砂率約千分之五;低水位

表4 文昌橋下測點之入滲流速(2011年7月25日

月日	壓力差	流速	目日	壓力差	流速	
ЛЦ	cmH_2O	×10 ⁻⁵ m/s	ЛЦ	cmH_2O	×10 ⁻⁵ m/s	
wen725	23.77	5.25	wen830	51.15	1.84	
wen726	14.87	2.57	wen901	73.65	1.93	
wen727	9.82	2.12	wen902	17.21	2.84	
wen728	8.92	1.97	wen903	15.30	1.73	
wen729	6.18	1.40	wen904	16.41	1.56	
wen801	0.45	3.33	wen905	14.10	1.49	
wen802	4.14	11.90	wen906	9.71	1.27	
wen803	0.56	3.45	wen907	11.67	1.31	
wen804	-3.06	3.27	wen908	10.26	1.32	
wen805	-4.60	2.63	wen909	5.26	1.40	
wen806	6.70	6.85	wen910	-11.22	1.46	
wen807	22.98	2.45	wen911	-12.86	1.13	
wen809	58.73	5.22	wen913	34.25	2.04	
wen810	65.35	4.91	wen914	34.86	1.44	
wen811	76.15	2.74	wen915	43.06	1.70	
wen812	82.72	6.05	wen916	34.00	1.45	
wen813	71.21	2.29	wen917	29.38	1.37	
wen814	49.06	2.31	wen918	26.46	1.40	
wen815	59.31	1.96	wen919	30.46	1.97	
wen816	70.13	2.37	wen921	31.15	1.32	
wen817	72.11	1.97	wen922	26.59	1.36	
wen818	72.50	2.19	wen923	18.32	1.43	
wen819	74.39	2.64	wen924	25.68	4.67	
wen820	68.05	2.16	wen925	32.16	1.30	
wen821	67.16	1.95	wen926	29.20	1.55	
wen822	65.14	1.70	wen927	34.19	1.48	
wen823	61.51	1.94	wen928	34.54	5.45	
wen824	64.03	7.92	wen929	36.19	1.42	
wen825	49.58	1.51	wen930	28.12	1.61	
wen826	33.82	2.58	wen1001	24.24	1.70	
wen827	59.86	3.19	wen1002	49.15	3.03	
wen828	70.19	4.95	wen1004	57.61	1.42	

至10月04日)

時期9月2日至9月11日,河流水位低於40 cm 以下,河水流速約0.2 m/s,河水含砂率約千分之 一。最低水位期,現地可見部分乾枯的河床面明 顯覆蓋 0.1-1 cm 的泥砂層。

由温度法求出入滲流速後,若再得知水力梯 度,則可以達西公式求出河床質的垂向水力傳導 係數。水力梯度可由河床面與河床下之水壓差,

圖 9 改變熱擴散係數對入滲流速的影響,以 7 月 25 日數據為例

圖 10 入滲流速並沒有明顯與水壓差成正比,應是 泥砂沉澱堵塞入滲孔隙

除以兩者之間的距離(0.4 m)得之。本次試驗的河 床質垂向水力傳導係數大都介於 10-4 與 10-5 之間 (圖 11), 平均約 3.27 × 10⁻⁵ m/s。根據地下水觀測 網在濁水溪地區的抽水試驗顯示,此地河流礫石 堆積的水力傳導係數約為 10⁻³~10⁻⁴ m/s (經濟部 中央地質調查所,1999)。本次試驗的水力傳導係 數較低約 10-100 倍,應該就是泥砂阻塞導致。

水利署曾在1999-2000年間於濁水溪南岸的 公有地進行入滲池的實驗(許少華與黃文欣, 2003),水源引用濁水溪溪水、含泥砂量約 200 ppm,二個多月的實驗,水池的入滲率由1.9× 10⁻⁵ m/s 降至 0.98 × 10⁻⁵ m/s。其原因為泥砂堆積 於入滲表面,淤積層最厚可達 33 cm,此層的水 力傳導係數約只有 3.8×10⁻⁶~1.7×10⁻⁷ m/s。本研

圖 11 由入滲流速(v)推算之水力傳導係數(K)大都 介於 10⁻⁴ 與 10⁻⁵之間

圖 12 「不連接河」因河床有阻塞層,下接不飽和 帶,再往下才是地下水位面

究的入滲流速約 2.63×10^5 m/s,若假設河床質 為飽和、孔隙率約 0.3,換算成水體的入滲率約 1.18×10^5 m/s,與水利署的實驗值很接近。

國外研究不乏自然河川存有阻塞層(clogging layers)的例子(Schalchli, 1992; Treese *et al.*, 2007; Brunner *et al.*, 2009),例如德國萊茵河(Rhine River)在 Flehe 河段含泥砂量約 10-400 ppm,雖 然河床底質是第四紀的礫石層,但因阻塞層的存 在,河流入滲率大約只有 1.1×10^{-5} m/s (Schubert, 2006);澳洲的 Fowlers Creek 河流入滲率低至 10^{-6} ~ 10^{-7} m/s (Dunkerley, 2008)。

若河床面形成阻塞層,而地下水面又很深, 以本研究在濁水溪的文昌橋支流,地下水面可能 深達河床下 20-30 m,可能造成所謂「不連通河」 (disconnected stream) (Bouwer, 2002; Constantz, 2008; Brunner et al., 2011)。特徵為阻塞層的水力 傳導係數較低,其下面的水力傳導係數較高,因 此入滲水往下較易流動,阻塞層與地下水面之間 形成不飽和帶(unsaturated zone),含有空氣(圖 12)。在本研究進行時,往下挖至 40 cm 深度過程

圖 13 河床面的壓力(P00)與深度 40 cm 處(P40)的 壓力並沒有明顯相關,圖中河床面的壓力値 應包含氣壓及水壓,深度 40 cm 的壓力除了 氣壓及水壓,應再加上土壓

中,常可見氣泡往上湧,應也是證據之一。另一 項證據為,在深度 40 cm 處的壓力測棒,其壓力 時間序列與河水水位沒有關連,顯示河川因水位 高低形成的壓力,已被阻塞層所抵消,並無法傳 遞至下層(圖 13)。

四、結 論

本研究自行發展一維熱傳公式的數值程 式,利用溫度日變化推算河床之入滲流速。並在 彰化縣二水鎭濁水溪支流進行實測,分別在河床 面及深度40 cm 處埋設壓力及溫度測棒,2011 年 8 月至10 月共得71 組數據,發現河床入滲流速 約為1.13-11.9×10⁻⁵ m/s,平均約2.63×10⁻⁵ m/s。

經由達西公式推算的垂直水力傳導係數介 於10⁴與10⁻⁵之間,平均約3.27×10⁻⁵m/s,與前 人研究的水力傳導係數約10⁻³m/s相差甚大,且 入滲流速也與河流水位高低沒有關係,推測乃因 河床面的阻塞造成入滲流速與水力傳導係數的 降低。本河段的地下水面可能深達河床下20-30 m,加上河床面有阻塞層,可能造成所謂「不連 通河」,即阻塞層與地下水面之間為不飽和帶。

誌 謝

感謝經濟部中央地質調查所經費上支持,國 立成功大學資源工程學系李振誥教授及徐國錦 副教授,對於本研究計畫之協助與建議。嘉南藥 理科技大學溫泉研究中心及溫泉研究所的協助 與支持。

參考文獻

- 許少華、黃文欣(2003)「補注池入滲阻塞現象 模擬探討」,台灣水利,第51卷、第4期、 第53-62頁。
- 經濟部中央地質調查所(1999),「濁水溪沖積 扇水文地質調查研究總報告」。
- Anderson, M.P. (2005) "Heat as a ground water tracer." Ground Water 43, 951-968.
- Bouwer, H. (2002) "Artificaial recharge of groundwater: hydrogeology and engineering." Hydrogeology Journal 10, 121-142.
- Brunner, P., Cook, P.G. and Simmons, C.T. (2009) "Hydrogeologic controls on disconnection between surface water and groundwater." Water Resour. Res., 45, W01422, doi: 10.1029/ 2008WR006953.
- Brunner, P., Cook, P.G. and Simmons, C.T. (2011) "Disconnected Surface Water and Groundwater: From Theory to Practice." Ground Water, 49: 460-467.
- Constantz, J. (2008) "Heat as a tracer to determine streambed water exchanges." Water Resources Research 44, W00D10, doi: 10.1029/ 2008WR006996.
- Dunkerley, D.L. (2008) "Bank permeability in an Australian ephemeral dry-land stream: variation with stage resulting from mud deposition and sediment clogging." Earth Surface Processes and Landforms, 33/2, 226-243.
- Halford, K.J. and Mayer, G.C. (2000) "Problems associated with estimating ground water discharge and recharge from stream-discharge records." Ground Water, 38, 331-342.
- Hatch, C.E., Fisher, A.T., Revenaugh, J.S., Constantz, J. and Ruehl, C. (2006) "Quantifying surface water/ground water interactions using time series analysis of streambed thermal records:

Method development." Water Resour. Res., 42, W10410, doi: 10.1029/2005WR004787.

- Healy, R.W. and Ronan, A.D. (1996) "Documentation of the computer program VS2DH for simulation of energy transport in variably saturated porous media-modification of the U.S. Geological Survey's computer program VS2DT." U.S. Geol. Surv.Water Resour. Invest. Rep., 96-4230, 1-36.
- 12. Holman, J.P. (1992) "Heat transfer." London, McGraw-Hill.
- Keery, J., Binley, A., Crook, N. and Smith, J.W.N. (2007) "Temporal and spatial variability of groundwater-surface water fluxes: Development and application of an analytical method using temperature time series." J. Hydrol. 336, doi: 10.1016/j.jhydrol.2006.12.003.
- Kraatz, D.G. (1997) "Irrigation canal lining." Food and Agriculture Organization of the United Nations, Land and Water Development Series, 1, 199p.
- Lam, C.Y. (1994) "Applied numerical methods for partial differential equations." New York, Prentice Hall.
- Lapham, W.W. (1989) "Use of temperature profiles beneath streams to determine rates of vertical groundwater flow and vertical hydraulic conductivity." U.S. Geol. Surv. Water-Supply Pap 2337, 35p.
- Lee, D.R. and Cherry, J.A. (1978) "A field exercise on groundwater flow using seepage meters and mini-piezometers." J. Geol. Educ., 27, 6-10.
- Lener, D.N. (1997) "Groundwater recharge." In: Saether O.M., de Caritat P. (eds) Geochemical processes, weathering and groundwater recharge in catchments. AA Balkema, Rotterdam, 109-150.
- Munz, M., Oswald, S.E. and Schmidt, C. (2010)
 "Sand box experiments to evaluate the influence of subsurface temperature probe design on tem-

perature based water flux calculation." Hydrol. Earth Syst. Sci. Discuss., 8, 6155-6197.

- Niswonger, R. and Prudic, D.E. (2003) "Modeling heat as a tracer to estimate streambed seepage and hydraulic conductivity." U.S. Geol. Surv. Circ. 1260, 81-89.
- Pruess, K., Oldenburg, C.M. and Moridis, G. (1999) "TOUGH2 user's guide, version 2.0." Rep. LBNL-43134, 198 pp., Lawrence Berkeley Natl. Lab., Berkeley, Calif.
- 22. Ronan, A.D., Prudic, D.E., Thodal, C.E. and Constantz, J. (1998) "Field study and simulation of diurnal temperature effects on infiltration and variably saturated flow beneath an ephemeral stream." Water Resour Research 34, 2137-2153.
- Rushton, K. (1997) "Recharge from permanent water bodies." In: Simmers I. (ed.) Recharge of phreatic aquifers in semiarid areas. AA Balkema, Rotterdam, 215-255.
- Rutledge, A.T. (1997) "Model-estimated ground water recharge and hydrograph of groundwater discharge to a stream." US Geol. Surv. Water Resour. Invest. Rep., 97-4253, 29p.
- Scanlon, B.R., Healy, R.W. and Cook, P.G. (2002) "Choosing appropriate techniques for quantifying groundwater recharge." Hydrogeology Journal 10, 18-39.
- Schalchli, U. (1992) "The clogging of coarse gravel river beds by fine sediment." Hydrobiologia 235/236, 189-197.
- 27. Schubert, J. (2006) "Experience with Riverbed Clogging Along the Rhine River." Riverbank Filtration Hydrology, NATO Science Series IV: Earth and Environmental Sciences, Springer Netherlands, 221-242.
- Silliman, S.E. and Booth, D.F. (1993) "Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Judy Creek, Indiana." J. Hydrol. 146, 131-148.

- 29. Silliman, S.E., Ramirez, J. and McCabe, R.L. (1995) "Quantifying down-flow through creek sediments using temperature time series: One One-dimensional solution incorporating measured surface temperature." J. Hydrol. 167, 99-119.
- Stallman, R.W. (1963) "Methods of collecting and interpreting groundwater data." U.S. Geol. Surv. Water Supply Pap., 1544-H, 36-46.
- Stallman, R.W. (1964) "Multiphase fluid flow in porous media – a review of theories pertinent to hydrology studies." U.S. Geol. Surv. Prof. Pap. 411-E: 51.
- 32. Stallman, R.W. (1965) "Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature." J. Geophys. Res. 70, 2821-2827.
- 33. Stonestrom, D.A., and Blasch, K.W. (2003) "Determining temperature and thermal properties for heat-based studies of surface-water groundwaer interactions." In heat as a tool for studying the movement of ground water near streams, ed. DA Stonestrom and J Constantz, 73-80. USGS Circular 1260. Reston, Virginea: USGS.
- Stonestrom, D.A. and Constantz, J. (2003) "Heat as a tool for studying the movement of ground water nears streams." U.S. Geol. Surv. Circ., 1260, 1-96.
- 35. Suzuki, S. (1960) "Percolation measurements based on heat flow through soil with special reference to paddy fields." J. Geophys. Res., 65, 2883-2885.
- 36. Treese, S., Meixner, T., Hogan, J., McCoy, A. (2007) "Artificial Streams, Distorted Processes: The Effect of Effluent on Stream-Aquifer Interactions." American Geophysical Union, Fall Meeting 2007, abstract #H24F-06.
- 37. Tsai, T.C., Wu, C.C. and Hsu, W.R. (2008) "On soil temperature analyses and soil thermal diffusivity estimation in Taiwan." Atmospheric Sciences 36, 83-100.

- Taylor, C.B., Wilson, D.D., Brown, L.J., Stewart, M.K., Burden, R.J. and Brailsfor, G.W. (1989)
 "Sources and flow of north Canterbury Plains groundwater." J. Hydrol., 106, 311-340.
- 39. Taylor, C.B., Brown, L.J., Cunliffe, J.J. and Davidson, P.W. (1992) "Environmental tritium and 18O applied in a hydrological study of the Wairau Plain and its contributing mountain catchments, Marlborough, New Zealand." J. Hydrol., 138, 269-319.
- Voss, C.I. (1990) "A finite-element simulation model for saturated-unsaturated, fluid-densitydependent ground water flow with energy transport or chemically reactive single-species solute transport." U.S. Geol. Surv. Water Resour. Invest. Rep., 84i4369, 1-260.

收稿日期:	民國	100	年	11	月	30	Η
修正日期:	民國	101	年	3	月	28	Β
接受日期:	民國	101	年	3	月	30	Θ