Journal of Chinese Agricultural Engineering Vol. 50, No. 2, June 2004

# 近飽和均質土壤之熱量傳遞

# Heat Transfer in Nearly Saturated and Homogeneous Soils

農業工程研究中心副研究員兼秘書

# 方文村

#### Wen-Tsun Fang

#### 摘 要

土壤基本上包含了固體顆粒、水分、空氣的三相系統,土壤因之在微觀上是非 均匀的介質。熱量波動模式可以發展來用以研究在非均一性之土壤內的熱量傳導 (Karam,2000)。本研究基於土壤內周期性熱流的似波特性,將土壤內因含水量遞減 形成氣泡現象加以考慮,熱量傳遞之傳播常數因氣泡的存在而有所不同,從而導致 熱量的散射。採用 Twersky (1952)及 Qian (1993)的方法,由對單一氣泡存在土壤中 所造成之熱波散射現象作分析,使用在氣泡表面上之兩個邊界條件:溫度變化及熱 通量爲連續,擴展單一氣泡之分析結果,以均一大小的球形氣泡散佈在原土壤之區 域內爲假設之理想狀況,視爲近飽和狀態之土壤,本研究得到熱波於近飽和土壤中 傳播的解析解。由解析解可以了解:同樣週期熱源下,在同一位置之近飽和土壤的 溫度變化振幅較之飽和土壤爲大,而差異之大小決定於土壤的飽和程度。

**關鍵詞**:熱量傳遞,散射,氣泡。

#### ABSTRACT

Soils basically are three-phase systems consisting of solid particles, water, and air. Soils are therefore microscopically nonuniform media. Thermal wave models could be developed to study heat transfer in nonuniform soils (Karam, 2000). This study, which is based on the wave-like characteristics of periodic heat flow in soils, takes into account of the phenomena of air bubbles presence in soils due to decreasing water contents. With air bubbles present, the propagation constants of thermal waves become different and result in thermal scattering. The method by Twersky (1952) and Qian (1993) is adopted for the problem. The thermal wave scattering due to single air bubble in the soil is analyzed. Two boundary conditions on the bubble surface, which are continuous soil temperature change and continuous heat flux, are applied to solve the problem. The analysis results for single air bubble are then extended. It is assumed as an ideal situation that spherical air bubbles of uniform size are scattered in the soil domain. The soil under the assumption is considered as nearly saturated situation. This study obtains the analytical solution for thermal wave propagating in nearly saturated soils. According to the analytical solution, it can be understood that temperature change amplitude for nearly saturated soils is larger than for saturated soil at the same location in case of same periodic heat sources. The amount of the difference depends on the degree of saturation for the soils.

Keywords: Heat Transfer, Scattering, Air Bubbles.

# 一、緒 論

土壤基本上包含了固體顆粒、水分、空氣的 三相系統,因之在微觀上,也形成了一種非均匀 的介質。土壤非均匀介質裡的傳輸現象相當複 雜,通常最引起興趣的莫過於土壤中水分的傳 送,然自然界土壤的表面係暴露在大氣中,週期 性或季節性的日照往往或多或少地影響著表面 土壤的水分傳送(方、簡,2000)。因此,熱量 傳遞一如其中的水分傳送有其研究之重要性,研 究之應用除了在自然界農業表面土壤外,如藏於 地下之輻射物質或埋在地底的電纜線等所產生 之熱量亦會導致土壤的溫度梯度,此梯度可以驅 動水分及熱量之移動。水分及熱量傳輸方面之研 究相當多,可以參考如 Philip、de Vries (1957); Warrick 等(1971); Nassar 等(1992)。研究之方法 除了以實驗進行外,研究所發展出來的水分及熱 量傳輸之模式亦被數值或解析方法分別研究 過,為遷就許多複雜的情況,大部分的研究者採 用數值方法 (如 Jaynes, 1990; Nassar、Horton, 1992a,b),有少部份之解析解可以適用於定溫下 水流之流動。對於土壤水分及熱量傳輸,在某些 特定狀況下僅存在更少的解析解(Brede- hoeft、 Papadopulos, 1965; Milly, 1984; Shao 等, 1998), 解析解雖然僅適合特殊情況且數量極少,但其可 以改進研究者對土壤熱量與水分傳輸共存問題 的了解。

在當不考慮水分傳輸時,土壤內熱量傳遞的 單獨存在之狀況,亦是自然界常存在的現象。衆 所週知在介質中週期性之熱流可以熱波(thermal waves)在該介質中的傳播來描述,而這些熱波擁 有一些與其他如電磁波或聲波相似之特性 (Karam, 2000)。這些特性包含:分隔兩介質的介 面間的反射(reflection)及穿透(transmission)、不規 則熱性質所造成的散射(scattering)、干擾 (interference)等。有鑑於此, Karam (2000)發展了 一種新的熱波模式,以研究在非均一性(nonuniform)之土壤內的熱量傳導,這個模式基於周期性 熱流的似波特性(wave-like characteristics),將非 均一性之土壤細分為性質變化的分層土壤,探討 熱波在分層土壤中的兩種特性:反射、穿透,也 因此可了解熱量在非均勻土壤中的傳遞。Karam 嘗試去回答如下之問題: 吾人是否可以利用已發 展之研究波動傳播(wave propagation)的技巧來研 究土壤中的熱傳遞?而由此計算之結果有多少 準確?Karam (2000)利用兩個已知解析模式的預 測解來進行其模式的測試及確認,其中一個模式 係發展為具有指數剖面變化之熱傳性質的土 壤,另一為具有線性剖面變化的熱傳性質。數值 的模擬顯示 Karam 所提出的模式預測能夠達到 兩個解析模式的預測解。當然,為達成解析解的 數學目的,其模式所考慮的狀況亦有其限制,模 式預測之土壤熱流狀況:包含熱傳導(conduction) 及熱對流(convection)之系統,係在當熱對流效應 極小,而熱傳導變成熱流通量變化之主要效應 時。

基於 Karam (2000)之研究基礎,當土壤內的 熱量傳導可以使用基於周期性熱流的似波特性 的模式來模擬,以物理之觀點看,表示熱量傳導 將土壤視為連續的介質,只是介質擁有連續變化



的熱傳性質。那至於利用已發展研究波動傳播的 技巧來研究土壤中的熱傳遞也可以因土壤中之 組成成分變化,而可以有所應用。一般波動的傳 遞除了 Karam (2000)所探討土壤中熱波的反射及 穿透外,尙有因介質少量混雜它種介質,而有散 射的現象發生,例如:在當聲波通過含有懸浮氣 泡的水中,伴隨著小氣泡脹縮的黏滯力(viscous force)及熱傳導等效應會導致能量衰減(energy attenuation),而且聲波會有散射的現象,換言之, 即聲波在各個小氣泡的表面上向全方向重新再 輻射出去(Kinsler 等,1982)。此種聲波通過擁有 氣泡的水中,所造成的散射現象已有相當多的研 究成果(如:Foldy,1945;方,1997)。

土壤結構在不受外力影響時,通常其中之水 分與空氣之體積和常維持定值,於是土壤在含水 量遞減時,空氣體積會增加(de Marsily,1986), 如圖1以尺度放大來繪出土壤在不同含水量下之 示意。Karam所提出的熱流模式將土壤包含的固 體顆粒、水分及空氣三相歸併爲同一介質,但 是,固體顆粒、水分及空氣三相其實是不同介 質,尤其是對於熱量傳遞波動行進特性有決定性 之影響的傳播常數(propagation constant),更應仔 細檢視其在不同介質的數量級(order of magnitude)之不同。其中前兩項組成固體顆粒及水分, 較之於另一成份:空氣,相差有一個數量等級, 也因而在土壤空氣體積率提高時,需以另一種擁 有不同傳播常數介質來描述其熱量傳遞,詳細之 數值比較與探討見第2.2 節。

本研究以基於熱波在土壤中的傳遞,考慮將

土壤會因含水量遞減而有空氣形成氣泡,導致傳 遞介質的傳播常數改變而有散射的現象,採用 Twersky (1952)及 Qian (1993)的方法,以均一大 小的球形氣泡散佈在原土壤之區域(domain)內為 假設,但由於土壤固體顆粒之幾何形狀是相當不 規則的,也因此影響到其他兩種組成:水分及空 氣之形狀。為使此假設可以成立,使固體顆粒間 空隙之幾何形狀尙未影響到逐漸增大體積的空 氣氣泡之形狀前,本研究假設土壤含水量是近飽 和狀態。

在此假設狀況下,本研究得到熱波於未飽和 土壤中傳播的解析解。以下以第二章說明研究中 所使用到之溫度控制方程式及比較不同介質之 傳播常數,第三章則對單一氣泡造成之熱波散射 現象作分析,第四章則在假設均一大小氣泡散佈 的理想狀態下,將第三章之結果擴展爲近飽和土 壤之熱波散射狀況,第五章則進行結果之適用範 圍分析與討論,本研究之結論歸納於第六章。

# 二、控制方程式與傳播常數

#### 2.1 土壤溫度控制方程式

土壤熱流系統中,熱流通量q包含熱傳導 $q^c$ 及熱對流 $q^a$ ,而其中熱傳導與熱對流又可分別表 為(參考Lee, 1999):

 $q^c = -K\nabla T$ , .....(2.1)

 $q^{a} = \rho \vec{cv} (T - T_{0})$ , .....(2.2)

其中 K 為土壤之熱傳導係數(thermal conduc-

tivity),  $\rho_s \times c_s \mathcal{D} \rho \times c \mathcal{D}$ 別表土壤及土壤中流 體之密度及比熱(specific heat), v為達西流速 (Darcy Velocity), T 為土壤溫度, T<sub>0</sub> 為土壤參考 溫度。根據能量守衡定律:

$$\nabla \cdot q = -\rho_S c_S \frac{\partial \Gamma}{\partial t}$$
, ....(2.3)

其中 t 為時間。熱流通量 q 代入上式,可以得到 土壤溫度之控制方程式:

假如土壤之熱傳導係數 K<sub>T</sub> 並非空間的函數,在僅考慮一維空間之狀況下,而且土壤中之 達西流速因太小而可以忽略,則上式在卡氏 (Cartesian)座標系可以進一步寫成:

$$C_{S} \frac{\partial T(z,t)}{\partial t} = K \frac{\partial^{2} T(z,t)}{\partial z^{2}} , \qquad (2.5)$$

式中 T(z,t)為土壤溫度, z為垂直向下之座標, 或 為土壤向下之深度,  $C_s$ 為土壤熱容量(heat capacity), 為  $\rho_s \gtrsim c_s$ 之乘積。土壤溫度在似穩態 (quasi steady state)之周期性變化時,可以將土壤 日溫度變化 T(z,t) 寫成如下之富立葉級數 (Fourier series) (參考 Karam, 2000):

$$T(z,t) = T(z,t) - T(z,0) = \sum_{m=1}^{\infty} \operatorname{Re}[T(z,\omega_m)\exp(i\omega_m t)],$$
(2.6)

其中 $i = \sqrt{-1}$ , Re[·] 為實數部分之運算子,  $\omega_m$  為日徑度頻率(daily radial frequency), 而其表為

 $\omega_m = m\omega$ , m = 1, 2, ..., .....(2.7)

m 為溫度調和級數之階數(order of harmonics)。

描述地表之溫度的變化可以以隨著時間變 化振幅之簡單正弦(sine)函數表示。一般而言,需 利用較高階的調和級數(尤其是第2及第3階) 來描述地表溫度的變化。然而,對於特殊野外條 件下的地表溫度觀測資料,基本的調和級數(*m*=1) 就已經合適來描述溫度的振盪(Shao等,1998)。 因之,此處僅考慮第一個調和級數,調和級數之 下標*m*可以省略。而(2.5)式轉換成時間調和溫度 (time harmonic temperature)  $T(z, \omega)$  之微分方程 式:

其中 k 為傳播常數,表為:

考慮熱源在上,熱波向下傳遞,結果,(2.8)式熱 波向下之解為:

以 A 為向下熱量波動在 z = 0時的振幅。通過某一 斷面之單位面積的熱量稱熱通量(heat flux),參考 (2.1)式,熱通量可以以垂直該斷面之溫度梯度與 熱傳導係數相乘之負値而得,相對於 $T(z, \omega)$ 之熱 通量表示為:

$$q^{c}(z,\omega) = -K \frac{\partial T(z,\omega)}{\partial z} = -ikKA \exp(ikz) \circ \dots (2.11)$$

#### 2.2 不同介質之傳播常數

圖1描繪土壤在不同含水量下之組成,當土 壤為飽和狀態時,其水分所占的區域中,仍有非 常少量的空氣存在;在土壤含水量開始下降後之 近飽和狀態下,空氣氣泡之體積增加,此時仍為 高含水量,而且固體顆粒間之通道的幾何形狀限 制,在此階段尙不至於影響空氣氣泡之成長;在 當土壤含水量繼續下降,則固體顆粒間之通道限 制了氣泡形狀朝球形增加,然因爲含水量之減 少,空氣繼續進入固體顆粒間,所以空氣之形狀 遷就於顆粒間之通道限制,此低含水量的階段各 種成分之幾何形狀是相當不規則。爲使所假設的 土壤區域散佈均一大小的球形氣泡可以成立,本 研究假設土壤是近飽和的含水量狀態。

由圖1及(2.8)式了解傳播常數對於熱波傳遞 是相當重要的,(2.8)式之數學處理方式通常視傳 播常數之大小而有差異。吾人可以檢視傳播常數 之數量級,以了解熱波在土壤介質中傳遞時,會 因其中不同組成成分而有傳播常數數量級之差 異。

|                     | 日週期T  | 日徑度頻率ω                 | 熱容量 C                | 熱傳導係數       | $abs(k) = (C\omega/K)^{1/2}$ | $abs(k) \cdot a$       |
|---------------------|-------|------------------------|----------------------|-------------|------------------------------|------------------------|
|                     | sec   | $(=2\pi/T)$ 1/sec      | J/m <sup>3</sup> -K  | K J/m-K-sec | 1/m                          | -                      |
| 空氣<br>(101kPa,20°C) | 86400 | 7.27×10 <sup>-5</sup>  | $1.22 \times 10^3$   | 0.0254      | 1.87                         | 8.04×10 <sup>-5</sup>  |
| 水                   | 86400 | 7.27×10 <sup>-5</sup>  | $4.18 \times 10^{6}$ | 0.60        | 22.51                        | 9.68 ×10 <sup>-4</sup> |
| 土壤礦物                | 86400 | 7.27×10 <sup>-5</sup>  | $2.31 \times 10^{6}$ | 2.5         | 8.20                         | 3.52×10-4              |
| 花崗石                 | 86400 | 7.27×10 <sup>-5</sup>  | $2.16 \times 10^{6}$ | 3.0         | 7.24                         | 3.11×10 <sup>-4</sup>  |
| 石英                  | 86400 | 7.27×10 <sup>-5</sup>  | $2.13 \times 10^{6}$ | 8.8         | 4.20                         | $1.80 \times 10^{-4}$  |
| 土壤1                 | 86400 | 7.27×10 <sup>-5</sup>  | $1.20 \times 10^6$   | 0.3         | 17.06                        | 7.33×10 <sup>-4</sup>  |
| 土壤 <sup>2</sup>     | 86400 | 7.27 ×10 <sup>-5</sup> | $2.00 \times 10^{6}$ | 1.35        | 10.38                        | 4.46×10 <sup>-4</sup>  |

表 1 根據不同介質特性計算 k 的絕對値之比較

註:(1) 空氣、水、土壤礦物、花崗石、石英等項之熱容量及熱傳導係數係參考 Campbell、Norman (1998) 之表 8.2。

(2) 土壤<sup>1</sup>及土壤<sup>2</sup>的熱容量及熱傳導係數係採用 Karam (2000)及 Massman (1993)中所使用之兩個計 算範例。

(3) 最後一欄係 k 的絕對值與水中氣泡平衡半徑 a 之乘積,此處氣泡平衡半徑 a 參考 Qian (1993)中所 使用,以4.3×10<sup>-5</sup>公尺爲計算範例。

傳播常數 k 為一傳播介質之性質(C<sub>s</sub>、K) 以及熱波之徑度頻率(ω)的函數(見(2.9)式), 將介質分為三類:空氣、水、土壤組成成分(土 壤礦物、花崗石、石英)、一般土壤來比較,以 所探討之一般表層土壤在受太陽日曬之情形,熱 波週期 T為24小時,徑度頻率2π/T則為7.27×10<sup>-5</sup>/ 秒,分別計算常見之情況下的傳播常數 k 的絕對 値(由於 k 包含虛數 i,所以採用絕對値作比較, 表為 abs(k))得表 1。

由傳播常數 k 的絕對值比較可以知道:表層 土壤在太陽日曬之情形下,熱波在介質為空氣的 傳播常數絕對值(1.87),較之水(22.51)及兩種一般 土壤(17.06、10.38)為小,約有一個數量級之差 距,而不含水分的土壤組成成分:土壤礦物、花 崗石、石英等的傳播常數絕對值(4.20~8.20)也大 於空氣。所以,以土壤之波動傳遞而言,傳播常 數因在其中的空氣體積增加,需以另一種擁有不 同傳播常數之空氣介質散佈在土壤其間,來描述 其熱量傳遞。以圖 2 來說明土壤之熱波傳遞模 擬,在土壤接近飽和、擁有高含水量的情況,模 擬土壤顆粒及水分之區域(斜虛線部分),傳播常 數有相同數量級而考慮爲相同介質,所以,剩下 之區域(空白部分)為由氣泡組成之另一介質。當 有數量多月散佈之氣泡存在,依照在波動已發展 之理論,熱波傳遞則會有散射之現象發生。



# 三、單一氣泡造成之土壤熱波散射

本章以土壤中單一氣泡的存在,開始討論其 熱量傳遞會發生之散射,然後再將結果擴展到多 氣泡情況。由第 2.1 節中得知在不考慮土壤之平 均溫度,土壤溫度之控制方程式(2.1)式在深度 *z* 之解為

 $T_p(z,t) = A \exp(ikz) \exp(i\omega t)$ , .....(3.1)

下標 P 表入射平面熱波(incident plane thermal wave)。在球形極座標系統中,對於土壤接受之 平面熱波沿著極軸(polar axis)入射,在點 $(r, \theta, \varphi)$ 之溫度變化可以表為:

$$T_{p}(z,t) = A \exp(ikr\cos\theta) \exp(i\omega t) =$$
$$A \sum_{m=0}^{\infty} (2m+1)^{m} P_{m}(\cos\theta) j_{m}(kr) \exp(i\omega t) , \quad (3.2)$$

上式中之  $P_m$  及  $j_m$  分別代表 Legendre 函數及 spherical Bessel 函數,時間因子  $\exp(i\omega t)$ 在以下的 說明中,暫時捨去以求數學處理上之簡潔。

假設座標系統中在原點 O 有一球形氣泡(氣 泡平衡半徑為 a),則入射平面熱波遭遇此氣泡後 所產生之散射波,在其氣泡表面外及氣泡表面內 分別表為(參考 Morse、Ingard, 1986):

$$T_s = A \sum_{m=0}^{\infty} B_m P_m(\cos\theta) h_m(kr) , r \ge a , \dots (3.3)$$

$$T_e = A \sum_{m=0}^{\infty} B_m^e P_m(\cos\theta) j_m(k_e r) , \quad r < a \circ ...(3.4)$$

上式中 $h_m$ 表為 spherical Hankel 函數,  $k_e$ 為氣泡 內之傳播常數,  $B_m 及 B_m^e$ 係待使用在氣泡表面上 之邊界條件所決定之常數。與入射之熱波累加而 得在氣泡外及氣泡內之溫度變化:

$$T = T_e = A \sum_{m=0}^{\infty} B_m^e P_m \left( \cos \theta \right) j_m \left( k_e r \right) \ , \ r < a \ \circ \ \dots (3.6)$$

考慮如何在本研究所探討的物理環境下,簡 化(3.5)及(3.6)式的表示法。因為兩式中 spherical Bessel 函數  $j_m$ 及 spherical Hankel 函數  $h_m$ 皆有傳 播常數與徑向距離乘積作引數,然在計算中因為 邊界條件於氣泡表面,故考慮徑向距離爲氣泡平 衡半徑,即r = a。此處氣泡平衡半徑參考 Qian (1993)中所使用,以  $4.3 \times 10^{-5}$ 公尺爲計算,傳播 常數與氣泡平衡半徑( $abs(k) \cdot a$ )之計算結果可以 參考表 1,可見該乘積皆相當小。當  $j_m(Z)$ 與  $h_m(Z)之引數 Z$ 相當小的時候,對於(3.5)及(3.6) 式中之累積項,吾人可以僅採用第 1 項(m = 0) 而忽略掉後面項。而當m = 0時,兩個函數  $j_0$ 及  $h_0$ 分別趨近於:

$$j_0(Z) \rightarrow 1 - \frac{Z^2}{6} , h_0(Z) \rightarrow 1 - \frac{i}{Z} \circ \dots (3.7)$$

由 Legendre 函數的特性知  $P_0(\cos\theta)=1$ 。以前述 之說明,土壤在點 $(r,\theta,\varphi)$ 之溫度變化為:

$$T = A \left[ 1 - \frac{k^2 r^2}{6} + B_0 \left( 1 - \frac{i}{kr} \right) \right] , \quad r \ge a \dots (3.8)$$

為解得溫度之變化,尙需求得 $B_0 及 B_0^e$ 兩個 待決定之常數。使用在氣泡表面(r=a)上之兩個 邊界條件:

(1) 溫度變化為連續:

$$1 - \frac{k^2 a^2}{6} + B_0 \left( 1 - \frac{i}{ka} \right) = B_0^e \left( 1 - \frac{k_e^2 a^2}{6} \right) \circ (3.10)$$

根據本研究所討論之氣泡大小範圍及所入 射之熱波性質,由表 1 得知: $k_e a \rightarrow 0$ 與  $ka \rightarrow 0$ ,上述之方程式則變成:

$$1 - \frac{i}{ka} B_0 = B_0^e \circ \qquad (3.11)$$

(2) 熱通量在氣泡之徑方向(radial direction)為 連續:

$$-K\frac{\partial (T_p + T_s)}{\partial r} = -K_e \frac{\partial T_e}{\partial r} , \quad r = a \circ ... (3.12)$$

相同地,考慮 $k_e a \rightarrow 0$ 及 $k a \rightarrow 0$ ,

爲求表示式能夠簡潔,令

$$r_1 = k_e/k$$
 ,  $r_2 = K_e/K$  , ......(3.14)

兩個方程式(3.11)及(3.13)可以聯立解得兩個未知數 $B_0 \gtrsim B_0^e$ ,  $B_0$ 為

### 四、近飽和土壤之熱波散射

第三章中以單一氣泡的存在討論其熱量傳 遞會發生之散射,當土壤中之含水量漸低時,土 壞中原本為水分的部分,空氣氣泡會增加,不僅 在數目上,在氣泡之大小上也會增加。本章承接 上一章對單一氣泡存在的討論,將結果擴展到多 氣泡,但氣泡大小為均一之假設下。在土壤含水 量方面,可以稱為理想狀態下接近飽和土壤的熱 波散射。

本章採用 Twersky (1952)及 Qian (1993)的方 法以考慮傳遞介質的改變而有散射的現象,如圖 3 之球形極座標系統所示,土壤溫度熱波在  $P(r_0, \theta_0, \varphi_0)$ 位置可以表為:

$$T_p = A \exp[ik(r_0 \cos \theta_0)] \exp(i\omega t)$$
  
=  $A \sum_{m=0}^{\infty} (2m+1)^m P_m(\cos \theta_0) j_m(kr_0) \exp(i\omega t) \circ ...(4.1)$ 

以圖 3 中之符號作表示,座標原點為 O,則 點  $P \ge Q$ 之座標分別為 $(r_0, \theta_0, \varphi_0) \ge (r_{0s}, \theta_{0s}, \varphi_{0s})$ 另一方面,點 P 如以點 Q 為座標原點,則可以表 為 $(r_s, \theta_s, \varphi_s)$ :相同地,點 Q 如以點 P 為座標原 點,則可以表為 $(r, \theta, \varphi)$ 。或以下標為座標原點, 可以簡單表成

$$P_O = (r_0, \theta_0, \varphi_0) , Q_O = (r_{0s}, \theta_{0s}, \varphi_{0s}) , .(4.2a)$$

$$P_Q = (r_s, \theta_s, \varphi_s) , Q_P = (r, \theta, \varphi)$$
 .....(4.2b)

由圖 3 上之幾何關係,有如下之關係式:

將時間因子 exp(*iωt*)如第三章中所處理一樣,暫 時捨去,而且採用座標轉換方式來處理,則(4.1) 式可以改寫成:

由第三章中得知因為 Q 點存在一個氣泡引 起之入射熱波散射,而在 P 點處之土壤溫度變化 為:

$$T_s = A \exp(ikr_{0s}\cos\theta_{0s}) \sum_{m=0}^{\infty} B_m P_m(\cos\theta_s) h_m(kr_s) ,$$
.....(4.5)



圖 3 第四章熱波傳遞所使用之球形極座標

其中係數 B<sub>m</sub> 為待決定之係數,而 B<sub>0</sub>已在第三章 中決定,即(3.15)式。依幾何關係式(4.3)轉換可以 得到:

$$T_{s} =$$

$$A \sum_{m=0}^{\infty} B_{m} \exp(ikr_{0} \cos\theta_{0} - ikr_{s} \cos\theta_{s})P_{m}(\cos\theta_{s})h_{m}(kr_{s})$$
, .....(4.6)
  
曲圖 3 上之幾何也可以讀出:  $\theta_{s} + \theta = \pi$ 及
$$r_{s} = r , 則(4.6) 武寫成:$$

$$T_{s} =$$

$$A \sum_{m=0}^{\infty} (-1)^{m} B_{m} \exp(ikr_{0} \cos\theta_{0}) \exp(ikr \cos\theta)P_{m}(\cos\theta)$$

$$h_{m}(kr) \circ$$
(4.7)

本研究考慮大小一致且均匀分布的氣泡分 布,將土壤區域中所有氣泡對在位置點 P 的熱量 散射波貢獻累加起來,以積分代替累加可以得到 下式:

$$T_{s} = NA \sum_{m=0}^{\infty} B_{m} \exp(ikr_{0} \cos\theta_{0}) \cdot (-1)^{m} \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\infty} \exp(ikr \cos\theta) P_{m}(\cos\theta) h_{m}(kr)r^{2} \sin\theta dr d\theta d\phi$$
, ......(4.8)  
上式中之 N 為每單位體積之氣泡數目。取 m=0

上式中之 N 局母単位臆慎之氣泡數曰。取 m=0 之項作估算,上式變成

$$T_{s} = NAB_{0} \exp(ikr_{0}\cos\theta_{0})$$

$$\int_{0}^{2\pi\pi\infty} \int_{0}^{\infty} \int_{a}^{\pi\infty} \exp(ikr\cos\theta) P_{0}(\cos\theta) h_{0}(kr) r^{2} \sin\theta drd\theta d\phi$$
.....(4.9)

吾人可以使用積分表中之公式:

 $\int_{0}^{n} \exp(ikr\cos\theta) P_0(\cos\theta)\sin\theta d\theta = 2j_0(kr) , \dots (4.10)$ 

且考慮如前假設 ka 相當小,並且散射之熱波由於 吸附(absorption),所以在無窮遠處之貢獻為零, 則(4.9)式之重積分變成(參考 Qian, 1993):

則散射熱波之(4.7)式整理得:

上式所代表之散射熱量波,加入時間因子 exp(*i*ox),可以與原熱量之入射波相累加而成為 因氣泡之存在所導致之土壤溫度變化:

$$T = \left(1 + \frac{i\pi NB_0}{k^3}\right) A \exp(ikr_0 \cos\theta_0) \exp(i\omega t) \circ .(4.13)$$

# 五、結果與討論

(1)定義氣泡體積分率(air bubble volume fraction)β 為土壤單位體積內之氣泡體積,如第 四章中所定義,N 為每單位體積之氣泡數目,所 以

另一方面,利用  $k_e a \rightarrow 0$  及  $ka \rightarrow 0$ ,且由表 1 計 算得知  $r_1 \ll 1$  及  $r_2 \ll 1$ ,可以簡化  $B_0$  (即方程式 (3.15)),得到:

$$B_0 = -\frac{ik^3 a^3}{3} , \qquad .....(5.2)$$

則土壤溫度變化(4.13)式可以寫成:

$$T = \left(1 + \frac{\beta}{4}\right) A \exp(ikr_0 \cos\theta_0) \exp(i\omega t) \circ ...(5.3)$$

(2)由(5.3)式可以知道:在本研究考慮之情況下,即空氣與水、土壤之傳播常數相差達一個數量級,且氣泡之半徑使得k<sub>e</sub>a→0及ka→0,

則由於熱波傳遞所造成之土壤溫度變化,與孔隙 內空氣之熱容量、熱傳導係數等性質無關,僅與 土壤單位體積內之氣泡體積 $\beta$ 有關。對於同一位 置 $P(r_0, \theta_0, \varphi_0)$ 之土壤溫度,由(5.3)式顯示:土壤 含水量越低, $\beta$ 越大,則其溫度變化越大。

然如第一章中所述,本研究以均一大小的球 形氣泡散佈在土壤區域內為假設,為使所用假設 可以成立,本研究適用土壤在接近飽和狀態,亦 即本研究結果並不適合土壤在低含水量之時,此 時非球形的氣泡可能產生;在土壤含水量進一步 降低時,更可能受限於顆粒間空隙幾何形狀,而 有更不規則的氣泡形成(如圖1之未飽和-低含 水量狀況),這些都非本研究之範圍。

(3)氣泡體積分率β在何種條件下可使本研究模式結果成立?由於土壤組成固體顆粒複雜,要尋求一簡單的適用範圍實非易事,但由第四章所導證出來的結果可以嘗試了解β的適用範圍。

比較(4.1)式及(4.13)式,可以發現對一擁有 波動振幅為A的入射熱波,當有氣泡存在時所產 生散射之效應,可以將之視為在處理沒有散射時 的波動,但其波動振幅改為 $(1 + i\pi NB_0/k^3)$ 。而且 (4.13)式之導證係採留取最低階次的項,忽略高階 次的影響,亦即假設熱波散射之效應相對其入射 之平面熱波為小,振幅改變的比例較1為小,以 數學式表之:

$$\frac{k \pi N B_0}{k^3} < 1$$
, .....(5.4)

或參考簡化後之(5.3)式:

$$\frac{\beta}{4} < 1 \circ$$
 .....(5.5)

通常線性理論忽略較高階次的影響,需較低與較高階次的效應有一個數量級的差距。所以,為求本研究結果可以適用之氣泡體積分率最大極限,將 $\beta_{max}/4$ 等於0.1,求得 $\beta_{max} = 0.4$ 。

然另一方面,考慮氣泡體積分率與土壤研究 常用的體積含水量(volumetric water content) $\theta$ 及 孔隙率(porosity)n之關係:

一般未夯實沉積物(unconsolidated deposits)的黏 土(clay)之孔隙率在 0.4 至 0.7 之間(Freeze、 Cherry, 1979),假設孔隙率為 0.5,則利用上式 換算成,當 $\beta = 0.4$ 時, $\theta = 10\%$ ,這是相當低的 含水量,超出本研究之範圍。所以, $\beta_{max} = 0.4$ 對 於本研究還是一個相當鬆散的限制。由於一般未 夯實沉積物的礫石(gravel)、砂土(sand)、坋土 (silt)、黏土之孔隙率在 0.25 至 0.7 相當大的範圍 間,無法使用單一氣泡體積分率來作爲適用範圍 界定。所以,將孔隙率納入考慮因素,建議本理 論適用的土壤氣泡體積分率之最大值爲孔隙率 的十分之一,即建議取用 $\beta_{max} = n/10$ 。例如在當 礫石類之孔隙率  $n \leq 0.25$ 時,應用本理論之土壤 體積含水量範圍爲: 22.5% <  $\theta \leq 25\%$ ,該範圍 使土壤能夠在近飽和之狀況內。

(4) 將(5.3)式取實數部分得:

$$T \approx \left(1 + \frac{\beta}{4}\right) A \cos(kz + \omega t)$$
, .....(5.7)

其變化為一餘弦函數形狀。土壤溫度的變化加上 在時間 t = 0 之溫度 T(z,0),得到土壤溫度:

$$T(z,t) = T(z,0) + \left(1 + \frac{\beta}{4}\right) A \cos(kz + \omega t) \circ (5.8)$$

以表 1 中所使用之土壤<sup>1</sup>為計算範例,k 之絕對値 為 17.06,使用  $\beta = 0.1$ ,將土壤在不同時間下無 因次化溫度變化與深度之關係依(5.7)式計算,繪 出如圖 4。其中溫度變化、深度、時間之無因次 化分別表為:

$$\overline{\mathsf{T}} = \frac{\mathsf{T} - \mathsf{T}(z,0)}{A} \quad , \quad \overline{z} = \frac{zk}{\pi} \quad , \quad \overline{t} = \frac{t\omega}{\pi} \quad .....(5.9)$$

以土壤表面(z=0)為例,其當無因次化時間為 0、0.4、0.8、1、1.4、1.8、2,無因次化温度變 化依序為 1.025、0.317、-0.829、-1.025、-0.317、 0.829、1.025,為週期振盪。無因次化溫度變化 振幅與土壤中氣泡體積分率 $\beta$ 有關,為  $(1+\beta/4)$ ,因之,本範例變化振幅為 1.025。而振 盪之週期與傳播常數k、土壤深度z、日徑度頻率  $\omega$ 有關,而k又是土壤熱容量及熱傳導係數之函 數,所以,振盪週期之影響因素,除了所考



慮之土壤位置,外在有熱源之周期或頻率,內在 則有土壤之熱容量及熱傳導係數。

(5)(5.8)式在餘弦函數的引數所出現之 k,是 土壤熱容量 C<sub>s</sub> 及熱傳導係數 K 之函數,雖然在 第二章溫度之控制方程式並無限制土壤之含水 量狀態,然在第三章的導證過程,係探討在固體 顆粒與水分兩者共存時,氣泡介質出現對熱波傳 遞有散射之現象。所以,在利用(5.8)式進行近飽 和土壤中之熱量傳遞推估時,計算 k 所使用之 C<sub>s</sub> 及 K 係土壤在飽和狀態下(即無氣泡,或氣泡相 當稀少)之熱容量及熱傳導係數。

(6)由本研究之解析解可以了解:同樣週期 熱源下,在同一位置之近飽和土壤的溫度變化振 幅較之飽和土壤為大,而差異之大小決定於土壤 的飽和程度。以類似的田間觀察資料(方、簡, 2001)為例作比較,含水量較高之土壤,其溫度 較不隨土壤深度而變化,本研究之解析解可以進 一步推論,高飽和度水田的土壤在周期性日曬 下,土壤溫度變化較之近飽和度的非水田土壤為 小,本研究為水田之存在對環境溫度的影響提供 一個理論的說明。

(7) 由於精確控制土壤中氣泡體積相當困難,所以,以不同氣泡體積的土壤實驗直接地佐 證本研究的土壤溫度解析解(4.13)或(5.3)式實不 易進行。然 Ochsner 等(2001)使用熱脈衝法(heatpulse method) 量 測 四 種 中 級 質 地 (mediumtextured)土壤的 59 個實驗圓柱之熱性質,所作之 實驗結果顯示: 20℃之土壤熱傳導係數可以被準 確地描述成土壤空氣體積分率(volume fraction of air)的遞減線性函數。雖然本研究係得證土壤溫度 變化的解析解,然而,藉由(5.3)式,可以推論土 壤熱傳導係數在不同土壤氣泡體積分率下的變 化,與 Ochsner 等(2001)所得之分析結果做一比 對,以部分佐證本研究解析解。以下說明土壤熱 傳導係數推論過程:

對於同一熱源的不同飽和度之土壤,在同位 置的熱傳導通量相同,由(2.11)式可知

$$q^{c}(z,\omega)\Big|_{1} = q^{c}(z,\omega)\Big|_{2}$$
, .....(5.10)

以下標 1、2 表為相對於飽和與近飽和之不同土 壞情況。K 為土壤的熱傳導係數,所以 K<sub>1</sub>、K<sub>2</sub>分 別表飽和與近飽和土壤的熱傳導係數。(5.10)式變 成:

$$K_1 \frac{\partial T_1}{\partial z} = K_2 \frac{\partial T_2}{\partial z}$$
, ....(5.11)

代入土壤溫度變化,整理得

$$\frac{K_2}{K_1} = \frac{1}{1 + \frac{\beta}{4}} , \qquad .....(5.12)$$

由於考慮之情況為近飽和狀態下,所以,一般而 言,β皆遠小於1。故可進一步改寫成

此顯示近飽和土壤的熱傳導係數與土壤氣 泡體積分率呈遞減線性關係,由此(5.13)式所繪 出的關係圖,以土壤氣泡體積分率為橫軸,熱 傳導係數為縱軸,則關係直線之斜率為 -K<sub>1</sub>/4,而直線與垂直軸之截距為K<sub>1</sub>。由於本 研究假設土壤中之氣體成氣泡形式存在,所 以,此處所稱之土壤氣泡體積分率即為Ochsner 等論文中之土壤空氣體積分率。故可以藉由 (5.13)式,提供Ochsner等所作之實驗結果在土 壤近飽和狀況下的理論說明。惟依據本研究理 論之推導的假設,土壤中應有均一尺寸之氣 泡,Ochsner等文中未闡述對土壤中氣泡尺寸之 控制,故並不能藉Ochsner等之實驗結果而推論 本理論有完全之實驗佐證。

# 六、結 論

(1)本研究基於土壤內的周期性熱流的似波特性,將土壤因含水量遞減形成氣泡現象而有熱量散射的因素加以考慮。採用Twersky (1952)及Qian (1993)的方法,由對單一球形氣泡存在土壤中所造成之熱波散射現象作分析,使用在氣泡表面上之兩個邊界條件:溫度變化及熱通量為連續,並以均一大小的球形氣泡散佈在土壤之區域內之接近飽和土壤的理想狀況,本研究得到近飽和土壤溫度變化的解析解。由所得之解析解可以推論:高飽和度水田的土壤在周期性日曬下,土壤溫度變化振幅較之近飽和度的非水田土壤為小。

(2) 本研究說明土壤溫度變化之振幅與其中 氣泡體積分率  $\beta$  有關:而變化週期之影響因素, 除了所考慮之土壤位置外,尙有熱源之周期或頻 率、土壤之飽和熱容量及熱傳導係數。此外,本 研究結果有其理論適用範圍,在考慮土壤之孔隙 率 n時,建議土壤氣泡體積分率之最大值為孔隙 率的十分之一,即 $\beta_{max} = n/10$ 。

(3)本研究於第四章中考慮大小一致且均匀 分布的球形氣泡分布,此為非常理想化之假設。 一般而言,人為產生的水中氣泡尺寸分佈,可能 遵循 Poisson 或 Gamma 規律(Qian 等,1992); 且由於本研究係探討土壤中之空氣氣泡,其尺寸 在氣泡體積分率逐漸增加時,因有週遭的固體顆 粒間不規則通道的限制,可能更無法如一般人為 產生的水中氣泡尺寸分佈,更非本研究所考慮之 大小一致且均匀的分布,此為本研究結果之應用 限制。

(4) 本研究之解析解可以推論近飽和均質土 壞的熱傳導係數與土壤氣泡體積分率呈遞減線 性關係,與 Ochsner 等(2001) 使用量測土壤實驗 圓柱之熱性質所得之分析結果一致。此不僅提供 Ochsner 等所作之實驗結果在土壤近飽和下的理 論說明,亦可以部分佐證本研究的解析解。惟依 據本研究理論之推導的假設,土壤中應有均一尺 寸之氣泡,Ochsner 等(2001)文中未闡述對氣泡尺 寸之控制,故並不能推論本理論有完全之實驗佐 證,此未來有賴經驗豐富之土壤實驗工作者進行 驗證。另一方面,氣泡體積分率β的數值應在何 種範圍下可以讓本研究之推導成立,除了於第五 章中討論外,由於土壤組成固體顆粒複雜,應該 針對某種土壤進行實驗,以尋求了解本研究結果 適用之範圍。

## 謝 誌

本文作者感謝農業工程研究中心簡傳彬博 士提供寶貴意見, 謹致謝忱。

## 參考文獻

- 方文村、"聲波於氣泡液體中之傳播"、<u>中華民</u> 國音響學會第十屆學術研討會論文集,國立 台灣大學,台北,1997。
- 方文村、簡傳彬,<u>地表溫度對土壤水分之影響(二)</u>,行政院農業委員會委辦研究計畫, 農業工程研究中心研究報告AERC-01-RR-28, 2001。
- Bredehoeft, J.D.; Papadopulos, I.S., "Rates of Vertical Groundwater Movement Estimated from the Earth's Thermal Profile," Water Resour. Res., 1(2), pp.325-328, 1965.
- Campbell, G.S.; Norman, J.M., <u>An Introduction</u> to Environmental Biophysics, 2<sup>nd</sup> ed., Springer-Verlag, New York, p.118, 1998.
- de Marsily, G., <u>Quantitative Hydrogeology</u> <u>Groundwater Hydrology for Engineers</u>, Academic Press, Inc., pp.26-28, 1986.
- Foldy, L.L., "The Multiple Scattering of Waves I. General Theory of Isotropic Scattering by Random Distributed Scatterers," Physical Review, 67, pp.107-119, 1945.
- 8. Freeze, R.A.; Cherry, J.A., <u>Groundwater</u>, Prentice-Hall, Inc., p.37, 1979.
- 9. Jaynes, D.B., "Temperature Variation Effect on

Field-Measured Infiltration," Soil Sci. Soc. Am. J., 54, pp.305-312, 1990.

- Karam, M.A., "A Thermal Wave Approach for Heat Transfer in a Nonuniform Soil," Soil Sci. Soc. Am. J., 64, pp.1219-1225, 2000.
- Kinsler, L.E.; Austin, R.F.; Coppens, A.B.; Sanders, J.V., <u>Fundamentals of Acoustics</u>, 3<sup>rd</sup> ed., John Wiley & Sons, Inc., Singapore, pp.160-161, 1982.
- Lee, T.-C., <u>Applied Mathematics in</u> <u>Hydrogeology</u>, Lewis Publishers, pp.198-200, 1999.
- Massman, W.J., "Periodic Temperature Variations in an Inhomogeneous Soil: A Comparison of Approximate and Exact Analytical Expressions," Soil Science, 155, pp.331-338, 1993.
- Milly, P.C.D., "A Linear Analysis of Thermal Effects on Evaporation from Soil," Water Resour. Res., 20, pp.1075-1085, 1984.
- Morse, P.M.; Ingard, K.U., <u>Theoretical</u> <u>Acoustics</u>, Princeton Univ. Press, Princeton, N.J., 1986.
- Nassar, I.N.; Globus, A.M.; Horton, R., "Simultaneous Soil Heat and Water Transfer," Soil Science, 154(6), pp.465-472, 1992.
- Nassar, I.N.; Horton, R., "Simultaneous Transfer of Heat, Water, and Solute in Porous Media: I. Theoretical Development," Soil Sci. Soc. Am. J., 56, pp.1350-1356, 1992a.
- Nassar, I.N.; Horton, R., "Simultaneous Transfer of Heat, Water, and Solute in Porous Media: II. Experimental and Analysis," Soil Sci. Soc. Am. J., 56, pp.1357-1365, 1992b.
- Ochsner, T.E.; Horton, R.; Ren, T., "A New Perspective on Soil Thermal Properties," Soil Sci. Soc. Am. J., 65, pp.1641-1647, 2001.
- Philip, J.R.; de Vries, D.A., "Moisture Movement in Porous Materials under Temperature Gradients," Trans. AGU, 38(2), pp. 222-232, 1957.

- Qian, Z.W., "Sound Propagation in a Medium Containing Bubbles and the Splitting of the Resonance Peak," J. of Sound and Vibration, 168(2), pp.327-337, 1993.
- Qian, Z.W.; Li, B.; Zheng, X.; Shao, D., "Sound Propagation and Inversion in Bubbly Curtains," Scientific Sinica, 35, pp.447-451, 1992.
- Shao, M., Horton, R.; Jaynes, D.B., "Analytical Solution for One-Dimensional Heat Conduction-Convection Equations," Soil Sci. Soc. Am. J., 62, pp.123-128, 1998.
- Twersky, V., "Multiple Scattering of Radiation by an Arbitrary Configuration of Parallel Cylinders," J. Acous. Soc. Am., 24, pp.42-46, 1952.
- Warrick, A.W.; Biggar, J.W.; Nielsen, D.R., "Simultaneous Solute and Water Transfer for an Unsaturated Soil," Water Resour. Res., 7(5), pp. 1216-1225, 1971.

收稿日期:民國 92 年 11 月 19 日 修正日期:民國 93 年 1 月 2 日 接受日期:民國 93 年 1 月 9 日