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| ABSTRACT
{
§

The main purpose of this paper is to present the genetic programming (GP) and
apply it to extend the flow records (y) according to the nearby stream-flow station (x).
Based on GP, the relationships between x and y can be expressed as parse trees. A
fittest function type will be obtained automatically from this method. The most
advantage of GP is that provides system identification in a transparent and structured
way.

To explore the theoretical capability of the model, a simple mathematical
function is identified by GP. The model is then applied to extend the annual stream
flow records according to the nearby stream flow station. The results show that the
model has better performance than both of the traditional linear regression method

efficiency for the hydrological data analysis.
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1. Introduction The traditional regression analysis turns into the

most common function approximation model.

Natural phenomena are marvelously com- The linear regression method may produce
plex, so we are hardly to estimate stream-flow  inaccurate results. However, some sophisticated
from experience. There are many hidden and regression models must through time-consuming
useful relationships between the nearby gages trail and error procedures. Besides, the correct
data, which may not be recognized by the analyst. regression type can’t be known ahead of time.

—79—




Therefore, many kinds of data mining techniques
are developed, such as statistics, memory-based
reasoning, artificial neural networks, decision
trees, genetic algorithms and so on.

Evolutionary computation techniques, which
are based on a powerful principle of evolution:
survival of the fittest, are very efficient optimiza-
tion methods. The well-known algorithms in this
domain include genetic algorithms, evolutionary
programming, evolution strategies, and genetic
programming. Among these methods genetic
algorithm (GA) is one of the most popular search
algorithms. But there are some kinds of
difficulties of GA, such as problem encoding and
fixed-length chromosome. On the contrary,
genetic program-ming (GP) operates a popula-
tion of the chromo-some expressed as dynamic
tree, which is more flexible to data structure.

Recently, there has been substantial success
in the use of GP to evolve pattern recognition.
GP works by emulating natural evolution to
generate a model structure that maximizes (or
1992)

involving an appropriate measure of the level of

minimizes) objective function (Koza

agreement between the model and system
responses. This new model allows us to gain
additional information on how the system
performs, i.e., gives an insight into the relation-
ship between input and output data. The
advantage of GP overcomes the drawback of the
artificial neural network (ANN), which owns a
weight matrix cannot accessible to human under-
standing at present.

Early applications of GP were performed by
Cramer (1985) and by Fujiki and Dickinson
(1987), among others. Recently, GP is an
established technique, which has been applied to
several nonlinear modeling tasks including the
development of signal processing algorithms

(Sharman and Esparcia-Alcazar 1996). Gary et.

al applied GP to the identification of the
nonlinear structure of a dynamic model from
experimental response from experimental data
(Gary et al. 1997). Savic et al. applied GP to the
identification of rainfall-runoff modeling (Savic
etal. 1999).

2. Genetic Programming

GP works by emulating natural evolution to
generate a model structure that maximizes (or
minimizes) objective function involving an
appropriate measure of the level of agreement
between the model and system responses (Koza
1992). This new model allows us to gain ad-
ditional information on how the system performs,
i.e., gives an insight into the relationship
between input and output data. GP builds on
methods derived from the genetic algorithm. GP
expresses the hierarchical computer programs as
parse trees, rather than as the binary strings
usually used by GA. Many engineering app-
lications of GP have been developed, such as
system modeling, artificial control, optimization
and scheduling, design, and signal processing
and so on.

There are five major preparatory steps in
using GP for a particular problem. These five
steps involve determining (Chen 2002)

1. The set of terminals consists of the
variables and constants of the program.

2. The set of primitive functions consists of
the mathematical functions and other more
complex functions.

3. The fitness measure, which is the most
important part of GP. For example, it can
be used the errors between the measured
and the estimated values.

4. The parameters for controlling the run
include the population size, crossover rate

and mutation rate etc.
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root node = 1
leaf nodes = 3,4, 6, 8,9
interior nodes = 2,5, 7

Figure 1. Parse tree representation of an expression.

5. The criterion for terminating a run ge-
nerally is set by a predefined number of
generation, or the amount of variation of
individuals between different generation, or

a target value of fitness.

(1) Representation Schemes

GP uses parse trees instead of lines of code
to represent programs. Thus, for example, the
zy(y + 0.639z)
would be represented as the tree in Figure 1. The

simple algebraic expression
‘root node’ is the first element of the tree, the
‘interior nodes’ are the functions and the ‘leaf
nodes’ are the constants and /or the variables. If
the set of functions used is sufficient, tree
structures are capable of representing any kind of

hierarchical programs.

(2) Reproduction (Selection)

Reproduction is a process in which
individual trees are set according to their fitness
function values. Baker (1987) presented three
measures of performance of the selection
algorithms, bias, spread and efficiency. The
reproduction operator may be implemented in
algorithmic form in a number of ways.
Tournament selection is computationally more
amenable

efficient and more to parallel

implementation (Goldberg and Deb 1991).
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Figure 2. Crossover scheme of two parse trees.

(3) Crossover (Recombination)

After reproduction, the algorithm uses a
crossover operator that exchanges arbitrary sub-
trees between two individuals with probability
Pc. The crossover operator used in GP must
ensure that programs obey the syntax of the
representation scheme. So it creates new
offspring that consist of genetic material taken
from the parents. Figure 2 shows how this

operator works.

(4) Mutation

Simple GA mutation is the occasional
random alteration, with small probability (Pm),
of the value of a string position. By itself,
mutation is a random walk through the search
space. When used sparingly with reproduction
and crossover, it is an insurance policy against
genetic drift that will lose important notions. The
mutation of GP simply consists of randomly
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exchanging a node in the tree with another node
or a sub-tree.

3. Stream-flow Extension Using GP

The system identification problem may be
viewed as a search for a function type, which
maps input values onto an output value. This
method consists the calibration (training) period
and the validation (testing) period. For both of
theses periods some objective criterion is needed
to compare the observed and modeled outputs.
The mean absolute error (MAE) is used as the
objective function in this case.

3.1 Tutorial Example

To illustrate applications to system iden-
tification the following simple mathematic model
is introduced (Cousin and Savic 1997, Babovic
and Abbott 1997, Savic et al. 1999):

y=CxxP

Where C =4.5, D = 2.5 are the constants.

The first step of this study is to build a
proper function library. The GP can auto-
matically select elements from this library and
generate a model structure, which will best
represent the training data. This function library
is very important and should be flexible enough
to be able to represent a broad range of systems.
In this study, we choose the basic functions,
including algebraic functions {+, - *, /, Sin, Cos,
Log, x*, Exp} as well as terminals (variables and
constants). Compared with the past study (Savic et
al. 1999), we have obtained a perfect match
function. According to their results, the expres-
sion was y =1.26605 x (sin(x) x x*) + 0.0916853..
Owing to the key operator, x’, we can easily
acquire the correct function type,
y=(1.82509*x)>* (see Figure 3), which is
equalto y=45% X

Figure 3. Parse tree of tutorial example.

3.2 Stream-flow Extension for the Potomac
Basin

Stream flow records have been extensively
used in a wide variety of water resources studies.
Unfortunately, we often face the problem that the
records of stream flow are too short to contain a
sufficient range of hydrological conditions or
have periods of missing data. To solve this
problem, we may transfer information from
nearby stream gage, that is, use the historic
records and extend them in time by the
correlation between flow at the site of interest
and concurrent flow at nearby gage (Alley &
Burns 1983).

The GP provides a feasible alternative in
this circumstance. In the following, we used
stream flow gages in the Potomac basin, U.S.A.
to demonstrate the usefulness of the algorithm
for annual stream flow extension. The data of
annual stream flows from 1931 to 1960 were
obtained from Salas et al. (1980) and the training
data are shown in Table 1. For this case, one
station was assumed as a short-record gage so
that its first 10 years annual flow needs be
estimated and the other station was taken as
long-record gage. In other words, the last 20
years of concurrent annual flow of the short-
record gage and the long-record gage were used
as a training set to build up the GP model. The
root mean square error (RMSE) is used as the
objective function in this case. The final fittest
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Table 1.

Training data

Near-by gage | 378 | 228 | 192 [ 257 { 231 | 181 | 357 | 242 | 270 | 280 | 251 | 209 { 336 { 340 | 251 [ 173 | 344 | 168 | 125 | 229
Estimated gage | 1440 1228| 750 | 1172|1439/ 1134 1652| 986 | 1087|1175 |1113|1218]1574]1570| 1356 | 760 | 1480|1060 | 852 | 799
Table 2. Verification results for these three models
Near-by | Estimated | Regression | Hyper Genetic
Station | Station Model |Rectangle [Programming|
158 731 896.55 806 900.18
309 1314 1371.05 1535.75 1334.14
268 1192 1242.21 1109.38 1246.18
268 1344 1242.21 1109.38 1246.18
242 1649 1160.51 1109.38 1181.50
127 643 799.14 806 753.04
383 | 1237 | 1603.59 | 1492.88 | 146146
479 1336 1905.26 1492.88 1587.03
423 1609 172929 | 1492.88 | 1518.13 Figure 4. Parse tree of stream-flow extension
278 1231 1273.64 1175 1269.07 problem in Potomac basin.
Correlations R=10.659 | R=0.681 | R=0.767
RMSE 280 233 199 . . .
in Euclidean n-space, ED, where n is the number of
lationshi variables or features in an example, then comparing
relationship was .
p the new example to those, and finding the most
Inx similar example in memory. The NHR, proposed by
¥ =(~85.9121+97.1002) x 27.5606 x exp( 86.9818) > the author of this article, is taking the training data
x as the points and generalized them into hyper-

shown in Figure 4. This equation can be reduced to

Inx
the form of y=308351x 86.9818 . As
exp[——' j

X

the model is set, its structure and parameters
would not be modified. Then it is directly used to
predict the first ten years' stream flow for the
short record gage. This procedure is by using the
concurrent records from the other one gage. The
results are shown in Table 2. The linear correla-
tion coefficient of GP is larger than that of linear
regression, y =400.05+ 3.14 x x. Obviously, the
GP has better performance than the linear
regression.

In order to demonstrate the high accuracy of
GP results, another artificial machine learning
model called nested hyper-rectangle (NHR) was
used to be compared with GP too. The strategy of
this model is based on storing points (or examples)

rectangles (Chang and Chen 1995). As the
generalizations grow large, there may exist some
exceptions, which create "holes" in the hyper-
rectangles. These may in turn give holes inside
them, resulting in a nested structure of hyper-
rectangles. The basic algorithm NHR is that it uses
some existing events as a foundation to predict the
outcomes of other events by building the structure
of hyper-rectangles. This process includes adjusting
the weights of the model's parameters in time and
making the system learn. The same data running
through these three different methods were listed in
the Table 2. It can be observed from Table 2 that
GP were better in preserving correlation than the
traditional linear regression model and NHR
learning model described above.

4. Conclusions

GP and NHR are two good models for
system identification problems and GP can
acquire more information on the detail of insight
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relationships between input and output data.
Unlike the traditional regression techniques, GP
automates the trial and error process of system
identification and can be used to build a model
structure that best fits training data. The most
important step of building the GP model is based
on the proper function library types. However, if
it is too general, that the GP tends to produce an
empirical ‘best-fit’ rather a meaningful model
structure. The Potomac basin model developed
using GP may be improved by using a different
objective function or even several of them.
Further research should be undertaken to use
various stations to

near-by construct a

multivariable GP model.
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