REx % F4HNE%4M Journal of Chinese Agricultural Engineering
THERHBIF 12 A HMK Vol. 41. No. 4, December 1995

BRAETETREDEYBIRERM SR MA

Relationship between Probability and Differential Models of
Airborne Dust Dynamics in Ventilated Livestock Housing

R EMARRETEBREIRE

B2 - |

Chung-Min Liao

" =B

AR B A& & T R BRI R B A RN B
AR TR — DUR SRR (L2 S HRRST » IR TR — DU S
AR BMRANERE - AHEMERAMRARTES —ESHEA BT WAL -
HREERNMETRE— 2 2R A/ G B AR TR E fR T
TR LU AU 7ERN B 0 o BB SRS i 3 R O AT T S 38 L 22 ] oh R R
B EEREE - Jik > BRA—#A RS SR AN EETRYEEES
BRREREENR - RRE—HEERE S SRR B EBEGIDIRA L EE
HAIC KB -

WS KMME  BERER > BoEK  BERE - BRES -

ABSTRACT

This paper shows the differential model describes the dynamics of airborne dust in
ventilated livestock housing is consistent with a probability description. The system model can
be represented either by a differential equation characterized by a system transport matrix or a
probability formulation characterized by a time-dependence transition probability matrix. A
structural identification algorithm is derived from the relationship between both models. The
algorithm is useful not only to get insight into the internal structure of a multi-airspace system
from input/output measurements but to determine what experiments are necessary to obtain .
uniquely the internal couplings. From the physical and mathematical analysis of the probability
model leads to a residence time model of airborne dusts in a ventilated airspace. Therefore,
either a differential equation or a probability formulation for parameter identification or for
physical interpretation can suit the purpose. To illustrate this procedure, tht;, algorithm is
applied to simulate the airborne dust distribution in typical ventilated livestock housing.
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INTRODUCTION

From the viewpoint of air quality, “the main
objective of a ventilation system in agricultural structures
is to limit animals, plants, or crops exposure to polluted
air. This implies at least for a steady air pollutant source,
that its spread and residence time within the agricultural
structures shall be minimized. The spread of a pollutant
and pollutant itself and the distribution of the supplied air
stated above must be quantified. That is to say, the flow
field occurring must be characterized.

The characterization of flow patterns in terms of
residence times permits treatment of continuous flow
systems which is independent of specific mixing
mechanisms.This type of approach seems suitable for use
in characterizing flows in ventilated agricultural
structures.

A deterministic theory of a lumped-parameter
model representing the average behavior of airborne dust
in ventilated animal housing has been dealt with
extensively by Liao and Feddes (1990). The equation
used to describe the dynamics of airborne dust is a
differential equation which describes the behavior of
airborne dust undergoing turbulent “diffﬁsion deposition
and gravitational sedimentation at any location within a
ventilated airspace.

On the other hand, the air movements in a
ventilated airspace are turbulent and the predominant and
distinctive feature of turbulence is its randomness. An
inevitable consequence of the randomness is that the
airborne dust concentration field (n(t)) is also random.
The results of repeated experiments on the diSpersion of
airborne dust with the same conditions at different times,
will be different from one another, Therefore, the

concentration field must be described in a statistical

sense, i. e., in terms of mean concentration (E[n(t)]),
variance(Var[n(t)]), and the third centﬁxl ‘moment Mj;[n
()]). Very little has been published on the statistical
viewpoint of multi-airspace systems describing fluctua-
tion from such ideal behavior.

A ventilated agricultural structure is a multiport
system having several supply and exhaust terminals. It is
of vital importance to know where an air contaminant
goes within a ventilated airspace. Thereasse and Sine (19
74) in their study of ventilation for livestock buildings

interpreted the results of tracer gas experiments in terms

of a concept related to residence time.

The purposes of this paper are: (1) to develop a
probability model for a multi-airspace system with a time
-dependent input and to include inputs from several
sources. The first three vcenlral moments of the
concentration fields as random variables will also be
calculated by the method of genefation function, (2) to
reveal a probability description between the system
transport matrix in a linear dynamic equation and the
system transition probability. Thus, the differential-
equation based parameters may be determined from the
corresponding set of probability parameters and vice
versa, and (3) to use tl}e relationships between both
models to interpret parameters from the statistical point
of view. This will lead to the interpretation of residence
time concept of airborne dust in a ventilated airspace. A
structural identification algorithm will also be derived.

ASSUMPTIONS AND DEFINITIONS

Before ..:: model develoﬁment, the following
definitions and assumptions are made.

1. The concentration vector of airborne dust ({ n;
(t)}) presents in a mulfi-ajrspéce (or multi-lump) system

at time t is a random variable, each value of the random
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variable represents a different state of the system.

2. The probability of the transition of one airborne
dust in a system from one state to another depends only
on the present state of the system and not on its past
history.

3. Random variables are statistically independent.

4. There are four probabilities defined as follows.

(1) P; .«()=p ( n;(r)=k]: the probability that k
airborne dusts are presented in lump j at time t.

(2) p;dt: the probability that any given airborne
dust exits the lump j in the interval (t, t+dt).

(3) o;,nidt: the probability that a given
airborne dust presents in lump i at time t enters lump j in
the interval of time (t,t+dt), in which o; ; can be defined
as the fraction of airborne dusts leaving lump i that enter
directly lump j, with ;‘,ai i SL.

(4)€,(1)d1 : the probability that one airborne dust

enters lump j in the interval(t, t+dt).

PROBABILITY CONCENTRATION
FIELDS

Q..

e

Fig. 1. A multiple airspaces system shows the pathways
of airborne dust among each airsapce

Q, u ar

As shown in Figure 1, the probability that an
airborne dust enters airspace (or, lump) j-from airspace i

in the same interval of time is:

kZ kP, (), .dt=a nE[n(t)]dt
-0

The expectation . E[n;(r)] satisfies the following
relations (Feller, 1968):

E[niu)]-kzou’,,t(t)

Therefore, the probability of an airborne dust
entering lump j from any other lump in the same time
interval becomes:

‘Za/(uiE[ni(t)]dl a)

Above expression indicates that the probability of
an airborne dust entering lump j from any other lump
depends on an expression involving the expectations of
the random variable of the .n, (W E[n;(£)1),
on their probability distributions.

and not

In order to synthesize a multi-lump system to
describe the concentration field in a sense of statistical
representation, a generating function concépt may be
introduced. The generating function of a random variable
(n(t)) for a single lump can be expressed as (see
Appendix):

GC.(s,t1)=g(s)[1-(1-s)exp(-ut)]
2
exp{-(1-s) §(t)*exp(-ut)}

where g(s) is the generating function of n(0), and
the convolution integral term defined as:

[lexp-nt-mEmar =g exp-uty

In terms of a multi-lump system, equation (2) can
be rewritten with ; instead ofy, and with equation (1)
instead of (#)d!, thus;

Gn(s,t)=g,(s)[1-(l-s)exp(-p )]

exp{~(179) L @ Eln(O1*exp(-w,0} ()

or,
G,,;(s.t)-G,l(s.t)I‘—[G,“(s,l) @)

where

Gy (s.)=g,()[1-(1-s)exp(-u,1)] (5)

G,“(s,t)-exp{"( l -S)Za,.ur E[n‘(t)]*exp(-u,t)} ©



G, i(s,t) and G, ;  (s,¢) are the generating functions

of random variables of Y, (+) and Z; ; (¢), respectively.
Therefore, concentrations of airborne dust
presented in lump j (n;(f))' can be expressed in terms of
another two random variables of ¥ i(Hand Z; (Has:
Ry (=Y (0* ) Z (D) -
where Y; (1) = the concentration of airborne dust in lump

j if no new airborne dusts enter it, i, e., Yo;; = 0; and
i

Z; ; (1) = the concentration of airborne dust in lump j if it
were initially empty and if only lump i has airborne dust
enters lump j.

Y () and Z, ;(¢) are statistically independent. In
measuring of particle number concentrations, number
concentration is obtained by dividing the total number of
particles collected by the total gas volume sampled. The
standard deviation of the count is usually assumed has a
Poisson distribution (Hinds, 1982). Therefore, Z; ; () and
Y, (1) may be assumed have a Poisson distribution. Thus,
the first three central moments of 17;(r) are (Feller,
1968):

E[n,(0)]= ELY (0)]+ ), E[n,()]*exp( -1, 0) ®
£

Var[n, ()}=Var[Y (1)]+ Za,.u.E[n.(l)]'exn(-u,t) ©)
Myln,(1)]= MY (D]+ Z o Elr (O exp (- u,l)
‘ (i
When the concentration of airborne dust in lump j
at time t=0 is determined, i. e yi;(t=0)=n;,, the
generating function of n,(+=0) becomes, g;(s)=5"'? .
The first three central moments of Y, (¢) are (Feller;1968):

ELY ;)] =n0exp(-u,l) a

VarlY (1= reexp(-1 1) (1 =exp(=,1)) ®

MY (O] =ngexp(-u,0) (1 -exp(-p, 1)1 - 2exp(-p,)) (13)
The expectation of Z; (r} can be calculated by
using the theory of generating functions(Parzen, 1960)

based on equation (6) :
E[Z,;()]= lirrl1 acz”(s,c)/as

=a,;u Elr,(1)]*exp(-u,l)
Therefore,

Gz, (s, )=exp{-(1-8)ELZ, ()]}
Thus,
r[Gz“(s.l)=exp{“(l“3)25[2;.(1)1}

=exp{—(l-s)E[Zzn(l) ‘} 19
By definition (7),

[Te.,(sty=exp(-(1-9)EIR (=Y (O ¢y

Eln;(0-Y(O1=E[n;())]-E[Y;(1)] , thus;

equation (i4) becomes:

[T62,(s.6)=exp{=(1=$)Eln, (O /exp(~(1=)ELY (O]}
(Y

Equation (if) can be rewritten in accordance with equation

(4) as:
C,,’(s,!)/(;,’(s.l)

Since

=exp{=(1-5)E[n,(N]}/exp(-(1-S)E[Y (O]} an

Thus, if the distribution of a random variable at
time t=0 is known, its distribution at any time can be
computed through equation (I7) by operating only on its
expectation.

PROBABILITY AND
DIFFERENTIAL MODELS
The dynamic behavior of an airborne dust
undergoing turbulent diffusive and gravitational deposit-
ions in a ventilated airspace can be represented by a
linear dynamic matrix equation (Liao and Feddes, 1990):
{dn(t)/dty==[BI{n()}+[V]{C(t)).
{n(0)}={no} (18-1)
where [B] is a system transport matriX, contains the
essential dynamic characters of the system being studied,
[V]~! is a inverse system volume matrix, and {G(t)} is
a dust generation rate vector. Matrix [B] may be defined
as (Liao and Feddes, 1990):



[BI=([H')'+[V]'[S"1+[T"])
[H1=U(r)[H}"Y , [H] '=[V]-1[A] ,
(T']1=(VI~'[Q), and [S’1=(D(r)+€)/8(S]; in
which [A] = cross-section area matrix of lump, [Q] =
square airflow matrix ([Q]=Q[B]l, Q=total system
volumetric flow rate, and [B]=entrainment ratio matrix),

(18-2)

where

[S] = wall surface area matrix of lump, U,(r) = particle
terminal settling velocity (cms™!), D(r) = molecular
diffusion coefficient (cm?s!), € = eddy diffusion
coefficient (cm?s™!), and 8 = thickness of concentration
boundary layer(mm).

The general solution of equation () is:

{n()}=exp(-[B]1){n(0))

*/;eXP(-[B](l-'f))[V]‘'(C(t'T)}d'c 19

The random state variable at time (t+h) ({n(t+h)})
can be transformed nonsingularly via a time-dependent
transition probability matrix ([p(h)]) by any other
random variables at previous time({n(t)}), and may be
expressed as (Liao and Feddes, 1990):

{n(t+h)}=[P(h)]J{n(t)} 1)

The element P,;(h) of [P(h)] represent a
proportion or percentage of airborne dust in airspace j
that is transferred to airspace i during a specified time
period h. It is assumed that these percentages remain
constant over the time range during which sample data
are collected (say,2 hrs). Equation () may be referred to
as a probability model.

As can be seen from equation (19), the solution of
n(t+h)} is:
(n(t+h)} {a(t+h)}y =exp(~{B1t+h)){n,)

+ [ expC-1B1Cte n- VT (G (e e h- 1y
=(exp(-[B]t) exp(-[B]h)){nro}

+fn‘exp(—[B](r—r')[l/]"(c(t -t )der @)

where t'=1—h . If h is very small, a combination of
equations (1) and (19 yields:

{n(t+h)y=exp(-[BIR){n(1)} vy

In view of equations ) and (), an important
relationship between system transport matrix ([B])and
transition probability matrix ([p(h)]) may be obtained as:

[P(h)]=exp(-[B]h) ®
On the other hand, equation (3 may be expanded as
follows:

[P(h)]=exp(-[Blh)=[I/]-h[B]+h?[B}?/2!-... ”

that for small h, it becomes:

[(P(R)]=[J}-h[B] v:]]
A matrix [M(6)1=[[I1-[P(#)]~! exists and is

equal to the series"z,o[P(mt)] (Maki and Thompson,

1973). Matrix [M(t)] is known as the fundamental matrix
corresponding to [P(t)]). Therefore,

MDY= -[PON T =[L-(71-t[BDI =t (B]

v.J]

Let P, ;(¢) denotes the element of [P(t)]. Then, in

an infinitestimal interval (t, t+dt), the mean time the

process is in lump i, having started in lump j, before

entering a lump, is P; ;(¢)dt. The total mean time the

process stays in lump i, having started in lump j,before

entering a lump, is the (i, jth element of:

I"T]-f;|‘P(t)]az -
Above integration may be obtained using the function of
a matrix representation (Zadeh and Desoer, 1963):
[ [Texp-taiar
=j;.(l/(Zui)fcexp([h]z)([A][IP[B])-I(“)(“

- l/(Zni)fc(/o—exp([)\]t)dl)([7\][I]‘+[B])_'d>\

= 1/(2ru‘)fc-[k1“ (EN [ FARNV: 37N

_ -1
[B] ®

where [ A ] = distinct eigenvalue matrix of [B], C = the
boundary of a domain containing the eigenvalues [ A ]
of {B], consist of a finite number of closed rectifiable
Jordan curves. In the last step, the contour C in the left
hand plane was chosen, so that exp ([ A ]t) approaches



zero as t approaches infinity.
Therefore, the row sum in [T], say the ith row, is

equal to mean residence time of airborne dust in lump i:

() =[TH1y=1B]'(1) @
Employing the Riemann sum, for small increments of
time h, to approximate the integral in equation @), it
becomes:

[T]=m};rP(mt)]t=t[M(l)] )
Notice that the approximation (0, along with equation
@) yields equation 06 . Equation () also reveals that the
element of [M(t)], say m, ;(¢), represents the mean
number of hour of airborne dust in lump i having started
initially from the lump j.

It is an interesting numerical exeréise to determine
the [B] corresponding to a time-invariant fundamental
matrix [M]. A relationship between matricess [B] and
[M] can be expressed as (Callier and Desoer, 1991):

(Bl=g(IM]D). where g(IAD=In((/]-[A]") @)

Using the Lagrénge interpolation method (Zadeh
and Desoer, 1963), matrix [B] can be obtained from [M]

as:

k=1 3
sk ik

g () e
4 @)

where A ; is eigenvalues of [M].
Therefore, it develops that these matrices ([B], [P
(], and [M(t)]) are related by fairly simple formulas

which permit computation of one from the other.

RESIDENCE TIME MODEL

1. Relationship between ¢, and U,

The inverse system transport matrix ([B]~!) may
be expressed in terms of a local purging flow rate matrix
({U]) and a transition probability .([P]) as (Liao and
Feddes, 1990):

-1 _ ~)
(8) =[u1 [PjVv] ey

Therefore, the residence time of an airborne dust finally
can be expressed in terms of the matrices of local
purging flow rate and transition probability via equations
(9 and (9 as:

(O =TUT'PIVI{L) &
In view of equation (9) that the sum elements in an

arbitrary row p in {B] ~! is equal to the mean residence

time of airborne dusts in airspace p, (-tp) :

(VUYL Y VP,
j=1
(;"p) (35)
It is true that p, ;<1 and therefore the following
upper bound of the local mean residence time in airspace

p can be obtained as:

N
tpSI/Upi-Z‘V,}V/UP a0

or,

Ui, sV an
Relation {§7) connects two important quantities, the
local purging flow rate and local residence time of the

airborne dust. Equation (37) may be rewritten as:

U,<(1,/t,)Q i &
Where 1, EV/Q = system nominal residence time. When
t,<t,. i. €., when local mean residence time of an
airborne dust is less than system mean residence time at

airspace p, relation (8) gives rise to the following

restriction to the local purging flow rate:

U,>Q (when 1,<7T,)

09

In the case of several extract airspaces there are
two possibilities, in each extract airspace is: 7,=1,. or
t,<1, ; while #,>1, in at least one airspace.

2. Relationship between ¢, and p,dr
From the statistical point of view, the mean

residence time of an airborne dust in lump p can be



written as (Feller, 1968):

E[Tp]-j;.'tnp('c)dr/j:np('c)dt=ip @
where T, is a continuous random variable represents the
mean residence time in a lump p, and can be taken as any
nonnegative value.

Recall that ,dr is the probability of a given
airborne dust present in lump p at time t leaves within the
interval dt. If a probability that an airborne dust is
present in lump p at time t is defined as q,(¢), then
qo,(Hp,dt is the probability that an airborne dust leaves
the lump p in the interval (t, t+dt). Thus, a mass balance
applied to a single lump yields:

t
l=fqp(‘c)|1pd'c+q,,(t). and q,(1)=0. al t<t,
to

where ¢, is the time of entry of the airborne dust into
lump p.

In differentiating above equation with respect to
time yields:

—G, (D =1,q,(1), g(te)=1
Hence,

qo(t)=exp(~u, (t-te)), t2t,

The generating function of 7, (Gr,(s)) can be
given by the integral (Parzen, 1960):
6oy ()= [ b pstat @

where p, ., dtis the probability that t <7, < t4dt.
From the definition of the probability of ¢,()u,dr,

the following relations is true:

pl.Pdt-qP(t)updt )

Therefore,

Gr,()= [ upexp(-p,(t-t))s'at

=s/(1-1/7p,Inis ) )
‘When the time of entry of an airborne dust is taken
as the initial time, i.e., 1,=0, the generating function

becomes:

Cr,(5) =f0 p,exp(-p,t)s'at

=l/(l—l/uplnls|) @)

As in the case of the discrete probability
distribution, the first three central moment of T, may be
calculated using the formula presented by Parzen (1960):

E[T,]=1im 3G /os =y}’
s41 . i
var[T,]= lim[2%G/7as2+dC/as - (36 /9s) | =u}’ )
=1
My[T )= lim [8°C /5% + 332G /35 (1~ 3G /3s)+ 2(3G/35)°
=1

-3(3G/3s)?+aCsas}=2u}]

Therefore, an important relationship among ¢,,,, and
the system transport matrix ([B]) can be obtained as:

(D= ™"y=[81'(1) 4
Equation 46) can also be extended to the time-dependent

case.

MODEL IMPLEMENTATION

A model implementation will be studied in some details
to give insight into the meaning of the concepts
introduced. The example will illustrate the procedure and
the implementation of the structural identification
algorithm to show the relationship between probability
and differential models. A two-lump model of a typical
livestock housing unit with a negative pressure
ventilation system will be considered (Figure 2). The
geometric and system parameters used in the model
implementation are listed in Table 1. A structural
identification algorithm for the dynamics of airborne
dusts in a ventilated airspace is illustrated in Figure 3.

It is assumed that an indoor disturbance occurs
resulted from animal activities in the building. As a
result, the indoor airborne dust source (G;(t)) undergoes
a sudden pulse change with a specific generation rate of
5x104 particles/min and lasts for about 5 seconds. That
is to say,initially lump 2 had 4170 particles of airborne

dust and lump 1 was empty.
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Fig. 2. A two-lump model of a typical livestock housing

with a negative pressure ventilation system used
in model implementation

Table 1. Input parameters used in the model

implementation

Gecmetric parameters®

System volume = 120 m® (10x6x2 m)
System surface = 64 m?
System height = 2 m

System parameters®

Ventilation airflow rate during cold weather = 420 m3/hr
Entrainment ratio = 5.0 (slot width = 10 cm)

Temperature = 20°C, RH = 30-40% (1 atm)

Average particle radius = 2.5 um

Reynolds number = 2000-3000

particle settling velocity = 0.0776 cm/sec

Effective diffusive coefficient = 0.00375 cm2/sec
Concentration boundary layer thickness = 0.085 cm

¥A1]l parameters are adapted from Liao and Feddes {(1993) .

{el-[sle

y

(8]

(i (0} == (BYn(} + V17 (G(0). {n(@}={n,}

-

!

L {n(r + y} < [P(BY)Yn(0)} J

[(P(1)] = e (- [B))

{

(1= £ (p(0 - (8)”

}

G
{n(0)}
y
THONE AU RO
<€
l ?a“yi(l)bini(l)]m
M} -r-[8y”
[M()] - (8] )
\L G (1)

v

[r) = (M) 4_.lb[,.(/)], Var [ n(1)], M"[,,(,)]J
\& Y
{i} =181 1y = {u} (81 - 8((M)])
N
{i} -t teonvitn
A
Post
Solutions

Fig 3. The structural identification algorithm of airborne dust dynamics in a ventilated airsapce
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1. {Ql, [B], and [B] ="
The airflow matrix [Q] may be expressed as [Q]=Q
(Bl

Qn -Qi2
(el ['Qzl Qa2

_rBel -
Q[-(B’fl) l3+l]

6 -5
=11.3 *min™’
[—6 6:l(m min~ ")

]’[B]Q

Transport matrix ([B]) is expressed based on

equation (18-2) as,
(BI=[H'T'+[V1[S'1+IV]'[Q)
2.266 -1.8887 . _,
[B]'[-z.zes 2.266](""")

The inverse of transport matrix ([B]~!) can be
calculated as:

a1 2.65 2.30 .
L8] [2.65 2.65]("”")
Therefore, the steady-state mean residence time of
airborne dust in lumps! and 2 may be computed from

equation (9 ,

{I(=)}y=[B]'(1}, as:

{,(®) = 2.65 + 2.30 = 4.95 min,

t,(®) = 2.65 + 2.65 = 5.30 min.

2. {u}

A tracer gas technique usually applied to monitor
the local mean residence time distribution at lumps 1 and
2 (Himmelblau and Bischoff, 1968, Sandberg and
Blomqvist, 1985). It is assumed that the runs gave the
following linear regression relationship between transient
mean residence time distribution(t(t)}) and running time
®:

L ()=t+1, and 1,(t)=1.25(t+1) @

From equation @), the probability that any given
airboune dust exits the lump j (u;) is represented as:

{u}={r1}, therefore,

p,=1/(t+1), and p,~0.8/(t+1) @

'

3. [P(W)]

The time-dependent transition probability matrix
([P(t)]) may be calculated ﬁom equation (3) , [P(t)]=exp(-
[B]t) as: P, 5(¢) = exp(1.888)t = 6.6t, and P, (1) = exp
(2.266)t = 9.6t. It is assumed that the transient response
times of transition probability were very short, say less
than 3 seconds, before the steady-state values
approached. Thus, P, 3(e) = 0.375, and Py, () = 0.4
were taken.Identically, P, ;(e) and P, (o) may be seen
as 0. ; (=), the fraction of airborne dust leaving lump i
that enter directly lump j.

Therefore, the probability that a given airborne dust

presents in lump i at time t enters lump j(o; ; it;) are:
@(0), =(0.375)0.8/(t+ 1)=0.3/(t+1),
Ay (0, =(0.4)1/(L+ 1)=0.4/(L+1).

4. E(n,()),Var [n, ()], and M, (1, (1)]

Initially, lump 1 was empty and lump 2 had pulse
input with a strength of 4170 airborne dust particles, the
boundary conditions (i. e., the generating function of)
n;(t=0) : g;(s)=s™ (*=97) for the probability model are
then:

4170

g,(s)=5%=1, and g,(s)=s

The corresponding concentration expectation equations
for the system are writtem based on equation (1) :

E[n,(1))=-1/(t+1)E[n (t)}+0.3/(t+))E[n(t)],
E[i,(1)]=0.4/(t+ 1)E[n, (1)]1-0.8/(t+ 1) E{n,(1)]. ®
With initial conditions of n; (0)=0 and »,(0)=4170.
Solution of equation 9 gives E[n,(s)] and
Elng(r)] . Since E[Y ()] = 4170exp{-0.8t/(t+1)}
(equation (11)), E[Z,(r)] may be
immediately (equation (7)). Furthermore, Var (n;(¢)]

computed

and M3 [n;(f)] can be computed from equations (9) and
0). Since E [Y,(f)] =0, lump 1 has a Possion
distribution and as a consequence, E([n;(f)] =
Var(n,(®)] =M; [n,(1)].

Equation 49 was solved numerically using the 4th-
order Runge-Kutter subroutine and the rest of the

analysis was done in double precision of Fortran 77.



Results were graphically illustrated in Figure 4,

legend: A B (o} D
Hu 0] var[n (0] M [a 0] o ()] Var [ (0]
: it Q)
o,
0000
170 peucicn
Timesec 3

Particle numbers

Time, sec

Fig. 4. Moments of airborne dust profiles in a two lump
model of a typical ventilated livestock housing
undergoses a pulse dust generation rate of 5x10 *
particles/min

The model example shows that the correspondence
between the probability mean and the deterministic value
is established in case of time-dependence. It is also
shown how the consequence of this can be utilized to
compute the distributions and the moments of airborne
dust concentration at any location within a ventilated
either a differential lumped-
parameter equation of a probability formulation for

airspace. 'Therefore,
concentration fields, either for parameter identification or

for physical interpretation as best suits the purpose.

CONCLUSIONS

The system equation of airborne dust concentra-
tions at any location within a ventilated airspace may be
rcprescntbd either by a differential equation characterized
by a system transport matrix ([B) as, {n()}=
—[Bl{n(O}+[V] -1 {G(1)}; or a probability formulation
characterized by a timedependence transition probability
(PM@]  as, {n(r+h)}=[P(h)] {n()}.  The

dynamics of airborne dust concentration fields may also

matrix
be expressed by its expectation (E[n()]) as,
20k Eln;(D]dr, where o i1, dr is the probability

that a given. airborne dust presents in lump i at time t
enters lump j in the time interval of (t, t+dt).
The identification algorithm is useful not only to

get insight into the internal structure of a multi-lump
system from input/output measurements but to determine
what experiments are necessary to obtain uniquely the
internal couplings. A probability model for a multi-
airspace system not only to determine the first three
central moments of the concentration fields but to obtain
the interpretation of residence time concept of airborne
dusts in a ventilated airspace.

The mean residence time vector of airborne dusts
(th) in a ventilated airspace can be calculated either
from an inverse system transport matrix ([B]~!) or a

probability that any given airborne dust exists the

airspace ({u}) as, {7})=(B]~! {1}={u"!}. The time-
dependence residence time of airflow in a ventilated
airspace may also be interpreted by the characteristics of
local purging flow rate matrix ({U]) and transition

probability matrix ([P()]) as, {«(n)}= (U]~ [PMH][V]
{1},where [V] is an air volume matrix.
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APPENDIX: Derivation of equation (2)

A mass balance applied to a single airspace (Figure
1) for two or more airborne dusts cross the boundary of
the syétem during the same interval:entering, leaving, or
both; thus, there are three transition probabilities, P{X(t+
At=i | X(t)=j} for the random variable X(t) from j to i
dust concentration in the interval (t+ A t). Define P, (¢) as

the probability that X(t)=i, with éopi (=1, and P,(¢) =0
fori<0.For i=0,1, -+,
P(‘X(t+At)=ilX(t)‘=i+ 1}=(i+1)pAt
PEX(t+AL)=i|X(t)=i)=1-ipAt-E(t)AL

and for i=1,2, -,

P{X(t+At)y=i|X(t)=i-1)=§(1)At

Combining these three statements, the following
expression can be obtaibed as:

P,-(t+At)’=Pl_,(t)-P(X(t+At)=i|X(l)=i—l)
+P () P(X(t+At)=i| X(t)=i)
+P - P{X(t+ A =il X(L)=i+1)

=P (DEDOAL+(i+ )P, (AL
+P(O){1-ipAt-g(t)Aty, i=0,1,...

above expression may be rewritten as:

(Pi(t+A) =P ())/AL=E()P ., (1)
“(H )P () + i+ DP L (1)

If A t— 0, above equation becomes:

dP(1)/dt=5(t)P, ()
—(RFEU) P+ (+ P, (1), =01,
(A1)
A generating function of a random variable X(t) is
defined as (Parzen,1960):

G, (s,t)= i P(t)s', (sl<l)
i=0

Therefore,

oG /ot= i(dP,-(t)/dt)si

=0

and

9G,/ds=) iP(t)s'"
i=0
Muitiplying both sides in equation (A1) by s' and taking
the sum of all such equations:

idp,.(t)/dts" =£(t) i P, (t)s!
=0

i=0

- guws(t))h-(t)s‘wzo(w P (1)s

or,

0G , /ot=E(t)sC, ~usdG /s —E(t)G  +udG /s
Rearranging above equation becomes:

-3G , /ot+u(1-5)0G /as=(1-s)E()C, (A2)

Following Lagrangs method, this partial

differential equation may be solved by first solving the
auxiliary ordinary differential equations:

dt/(-1)=ds/(u(1-s))=dG,/((1-8)E)C,)
From the first auxiliary equation:
—pdt=ds/(1- s)

It obtains:

~ut+In(l-s)=constant



(1-s)=Cexp(pt)
From the second auxiliary equation:
dt= de/(( 1-85)E()G,)
Itobtai;)s:
dG,/G =~(1-8s)E(t)dt=~C exp(ut)E(t)dt
The integral of above equation is:

In |c,|-'—c,fo'exp(ur)g(r)dr+c2
Substituting back the value of C, from equation (A3):

In{G,i=-(l-s)exp(-ut)-
[lexpunmar+c,

The general integral of equation (A2) is:
C,=n(C,); wheren is an arbitrary function of its
argument. Therefore,

InjG, 1+(1 -s)exr)(wt)'f:exp(ur)E('r)d'r
=n{(1-s)exp(-ut)}

Thus,
1G (s, ) I=exp{n[(l-s)exp(-nt)]}-

eXP[‘( 1 ‘S)f'exp(-u(t- r))E(r)dr]- G.(s,)
° (A9

the product on the right hand side of equation (A4) is
always positive.
Let the convolution integral defined as:

Jexp(-ut-enE(DIdT=E*exp(-ut)
If the initial condition is determined as;

C.(s.0)=g(s)=) P,(0)s*
=0

g(s)=exp(n(l-s))

Let 1-8 =1, therefore, n\(r)=Ing(1-1).
The generating function of X(t) is finally obtained

as:
C.(s,)=g(s)[1-(1-s)exp(-p))

exp[-(1-5)-E(t)*exp(-ut)]  (AS)
Equation (2) therefore is derived.

WREN: RES4E5829H
SEQM: RE84F9AH2H
B2 RR84E1083H

— 64 —



