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ABSTRACT

Simulation of ground water mounding uses the computation in the generalized
curvilinear coordinate to resolve the free and moving boundary problem. The general form of
governing equation and boundary conditions of the curvilinear coordinate are presented by
tensor so that the stretching and the rotation and/or angular deformation effects can be
accounted. The procedure involves generating a grid in the physical domain, then
transforming the physical domain (Cartesian coordinate)into the computational domain
(generalized curvilinear coordinate), and finally solving the problem in the computational
domain. Grid generation for the physical domain is a key step to obtain accurate, reasonable
solutions. This paper derived a complete tensor form of the generalized curvilinear coordinate
for a possion type equation. The verification by Hele-Shaw model is stated in the following
paper.
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1. Literature review

There are two problems in determining ground
water mounding computationally. One is to locate the
free surface (water table) with local recharge. This
boundary must be known in order to compute the flow
field due to mounding. On the other hand, the flow field
also influences the location of the free surface.
Consequently, the determination of the free surface
location has to be solved by an iteration scheme. Further,
as the comprtational grid in a numerical scheme using
finite differences generally is fixed and as the free
surface location changes from one iteration to the next,
the final comprted free surface position  will be
approximate as the free surface is not located exactly on
grid points.

Ground water mounding had been known for many
years. Different approaches have been used to account
for heterogeneity, unknown free surface position, non-
linear conditions, and irregular geometry. It is common
to assume that an aquifer is homogeneous or has a
hydraulic conductivity varying with depth or horizontal
location according to known functions. Steady-state
analytical solutions, assuming the aquifer is homo-
geneous, were found for models with simple geometry,
based on the Dupuit-Forchheimer assumption (Haar,196
2; Huisman, 1972). These assumptions also have been
used to develop unsteady-state solutions (Hantush, 1967;
Huisman, 1972; Maasland and Bittinger, 1963; Marino,
1974).The Dupuit-Forchheimer theory was used to solve
a three-dimensional problem by Strack (1984) in which
the flow field in three-dimensions is obtained using the
incompressibility condition and two-dimensional Dupuit-
Forchheimer flow models. Youngs (1965) applied the
Grinskii (1964) discharge potential to obtain an estimate
of the ermror of solutions for cases with hydraulic
conductivity varying with depth.

Some other analytical approaches have employed a
linearization of the non-linear free surface boundary
condition. Dagan (1967) developed solutions derived by

an expansion in a small parameter that linearizes the

exact equations of flow. Using Dupuit-Forchheimer and
potential theories, Brock(1976) presented solutions for
ground water mounding with both linear and nonlinear
boundary conditions. An exact solution was found for the
linearized case applied on the original, undisturbed water
table; a numerical solution by finite differences was used
for the nonlinear case. Schmitz and Edenhofer(1988)
presented a semi-analytical solution for ground water
mounding using conformal mapping and the theory of
complex functions.

Application of the spectral method has been used to
solve ground water mounding. Kirkham and Powers
(1964) used this method to obtained an exact theoretical
solution for flow through a homogeneous, rectangular
block of soil with constant heads on each boundary,
including the seepage face. The solution obtains the
coefficients and the water table height by matching the
water table’s stream function and potential function at a
finite number of points.Murray (1970) solved the same
model as Kirkham and Powers (1964) did by applying a
spline function. A trial and error method was used to find
the right position for calculating the water table. He also
indicated that Kirkham’s method does not converge to
the seepage face height. The author has applied the
spectral method in conjunction with the Grinskii
discharge potential to simulate the flow field due to
mounding in a simple homogeneous aquifer; however,
no reasonable solution was obtained.

Finite differences have also been used to solve such
problems. Singh (1976)applied finite differences with a
simple transformation to linearize the free surface
boundary condition. His model requires a reasonable
initial guess for the free surface. In some cases, the
predicted location of the water table may not be accurate,
and a number of iterations are required to arrive at a
satisfactory solution in each step. This condition is
mainiy due to the fact that the free surface boundary is
not located on grid points. Another popular numerical
ground water model is MODFLOW (1988) (A Modular
Three-Dimensional Finite-Diff-erence  Ground-Water
Flow Model), which can be used to simulate three-
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dimensional ground water flows in unconfined and
confined aquifers with heterogeneous or homogeneous
media. ‘As the model applies mass conservation to
rectangular blocks of various sizes, its flow field res-
olution is limited when the flow domain and heterogen-
eity geometry are of a scale equal to or smaller than the
block size.

The boundary integral equation method has been
used to solve free surface problems by Liggett and
Hadjitheodorou (1965). The Lagrangian dynamical
equations were used to solve the flow field following
rapid drawdown adjacent to a steep earth embankment.
By the same method, Liggett (1977) presented a solution
for the free surface position without recharge. Liu and
Liggett(1979) used the same idea to solve for ground
water mounding. Solutions for a three-dimensional
potential flow problem in an unconfined aquifer was
presented three years later (Lennon et al., 1980).

In the development of aerospace engineering,
conformal mapping has played an important role. The
basic idea of conformal mapping is to transform an
arbitrary contour into a circle using analytical functions
so that problems of potential flow can be solved; this
method utilizes the invariance of solutions to Laplace’s
equation mapped by analytic functions. This technique is
suitable and efficient; yet applications to fluid dynamics
were rare before 1970’s because of the computational
difficulties (Fletcher, 1991). Conformal mapping was
also applied in the field of ground water mechanics.
Many closed-form solutions for simplified ground water
flow problems were developed before computers were
widely used (Harr,1962).

The field of computational fluid dynamics has
rapidly developed with the use of computers. Since the
computational difficulties can be overcome, the
equations of motion can be solved numerically
considering pressure, viscous shear and compressibility.
To undertake accurate calculations, a well-organized
computational grid is necessary. In the early 1970’ the
theory of numerically-generated, boundary-conforming
coordinate systems was developed in order to meet the

need for a well-organized grids of arbitrarily-shaped
geomeiry. From that time on, many sophisticated
automatic grid generation codes, such as INMESH,
WESCOR (two-dimensional), and EAGLE, EagleView,
and GRIDGEN (three-dimensional), been
developed (Thompson, €l al., 1985).

have

2. Transformation relationships

2.1 Coordinate transform

For the finite difference method, the imposition of
boundary conditions on a domain of complex geometry
requires a complicated interpolation of the data on local
grid lines (such as Singh, 1976} and typically, a local loss
of accuracy in the computational solution. Such difficult-
ies motivated the introduction of a mapping or transfor-
mation from the physical domain (x,y,z)(rectangular
coord-inate domain)to a computational domain ( £ , 7 ,
¢ Xgeneralized coordinate domain). A distorted region
in the physical domain is mapped into a rectangular

region in generalized coordinate space (Fig. 1).

computational
demain

physical
dcmain

i
-—X
Fig. 1 Correspodence of the physical and generalized
coordinate domain
It is assumed that there is a unique, single-valued
relation between the physical domain and the generalized

coordinate domain; for a three-dimensional problem,

these relations are

E=£ (xyz (la)

n = 7 (x,y,z)and (1b)

{={&xy2 (lc)
with the inverse relations

x=x(€,n,¢)> (2a)

y=y(€,n,{ )and (2b)

z=2&E,7,() (2c)

The Jacobian matrix, J, and its inverse, J ~! for



these relations are

9f 0f JoF
ox dy 0z

=|97 97 971
i dx dy oz @

9L 9L 9f
dx dy 0z

and

J= |2

@

G T =)

ox
0

2
0

9
]

Q) [~%
v Sl Sl
Q) -2 Q
v 2 3

vy
Q)|

n
The elements of

of ] by

S
i

! can be related to the elements

I

_ TmsposeL!)[Cofactor(,L'l)
= T

where
| 7| =xe(nze —yeza) =%, Oeze —yeze) +
x (Vezn —Yaze) ®
Using Equations (5) and (6) the elements of ] in (3)

can be expressed as
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Another matrix, g, used in the governing equation
and boundary conditions,is
En &1z i
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where
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The above equations are used to transform the
governing and boundary conditions from the physical
domain to the computational domain.

2.2 Evaluation of transformation relations

Numerical implementation of the transformation
Eqgs. ((7)-(9))is carried out using second order central
differences. Thus, for the interior point (1,J,K)

Xrv1ax — Xi-1Jk o
Ervux— E v

Points on the boundary also are evaluated by a
second order approximation.When the domain is to the
right of the boundary (I=1),z , is

Xg=

_— 3xxt+ dXoux— X3k
e Ea.ur_ El.u: a

In computation, the grid spacing in the comput-
ational domain is taken to be unity. Hence, Egs. (10) and

(11) are rewritten

g =erba T FI-UK (for internal poits) and @
Xg= —3xxt gxz.ur—x’”‘ (for points on the left boun-
dary). Ik}

Evaluations of the other derivatives are carried out
in the same manner.Second-order transformation parame
-ters are required when a second-order equation (e.g.,
Laplace's equation)is transformed into the generalized
curvilinear coordinate. For example,

Xp e =Xpran— 2t Xim1x (14a)

Xy =Xpere— 2Xpx+ X1 and {14b)
_ Xirigriet X ot Xierm 1k X1k

Xeg = (140)

In a similar way, other second-order parameters can
be evaluated.

3. Grid generation

The computational grids in this work were gener-
ated by EagleView, developed at Mississippi State
Univer-sity. This software must be run on a Silicon
Graphics Computer. It is a panel controiling code. The
theoretical part of EagleView is described by Thompson
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et al. (1985). General rules for generating grids are based
upon the following considerations.
3.1 Limitation of memory

A dense, computational grid (samll grid spacing)
has less truncation error than a sparse grid but requires
more memory. As each computer has a certain memory,
the total number of grid points for modeling is limited.
Thus, the number and distribution of the computational
grid points are keys to obtaining reasonable and
satisfactory results.
3.2 Point distribution

Because of the memory limitation, non-uniform
grid points are frequently used.Truncation errors result
from the grid spacing and the distribution function,
which controls the smoothness of the grid. A one-
dimensional, point distribution function, F, ,can be

written as
x(E)=F [—1%] » whereQs £ <N )

Suppose x varies from O to 1. The first derivative in

one dimension of a function, f(x), is
_Je
f X 16

Using the central difference approximation of f , ,
Eq.(16) can be written

f,=% Ef’—ngé"J +Ti > an

where T | is the truncation error. In this analysis, x,
is evaluated analytically. Therefore, there is no truncat-
ion error for this term (Effect of numerical metric coeffic
-ients is discussed by Thompson et al., 1985). Using a

Taylor series expansion forf ;. andf ,_, on ¢ , gives
REEAE)=RAENEAES(E0)
tar A E e ()t ar A Eere(EQt - ®
Letting A £ =1 and substituting Egs. (18) into Eq.
an,T,is

T=—Lfeee  1feceee... 9
! 30 x;, 5! x;

Even though £ -derivatives of f describe a point
distribution, Eq. (19) can not be truncated since & -
derivatives of f are dependent on the point distribution.

£ -derivatives of f change with the change of number of
points(N) or distribution function (F , ).Hence, the
truncation error can not be expressed in terms of £ -
derivatives of f; however, the £ -derivatives are

transformed to x-derivatives for further discussion. From

Eq.(16)
fee=xeefitxe(f)e =x¢ of+ %3 f and @
Seer=xeeeft3xexe cfot Xifoue an

(A)Fixed distribution function
Consider changing the number of points (N) with a
fixed distribution function.From Eq. (15)

o AR LT @

From (20),(21),and(22),it is clear that
SeeeosNT 2 andfepppeN @
The second term in T ; ,Eq.(19), can be neglected
because of Eq.(23).Substituting Eq.(21)into the first term

of Eq.(19) gives
1 1 1
Th= =g L fa— g o

Thus,from Egs.(20) to (24) the truncation error
(T , )is proportional to N ~2 .
(B)Fixed number of points

Since the number of points is fixed, the grid spacing
must increase in some places, when it is decreased in
other places. Hence, the truncation error depends upon
the distribution function. As disussed by Thompson et al.
(1985),the estimation is still not attainable.
3.3 Orthogonality

Consider orthogonality for a two-dimensional pro-
blem. The first derivative of f(x) is given by

f=Oafe—yef)Ng > @5

where Vg= | J'| = x;y,~ X, ¥ (Eq.(6)).
With a two-point central difference for all derivatives
(similar process described in the previous section),the

leading term of the truncation error is
1 1
Te= m(" €XnXnn xéynxéi)fxx + m(yéynxynn - Yéé)fyy

* ﬁg‘[yéyn("nn ~xg )+ XnYeyn - "éynyﬁélfxy

+second order terms ,



where x ; X ,,y ; and y , are defined by Eq. (12)
using central difference, and x ;, and x , , are defined in
Eqs. (14a) and (14b). The contribution from non-
orthogonality can be considered with the case of skewed
parallel lines with x , =X ,, =X ¢, =Y ¢ ¢ =Y ¢, =0(see
Fig.(2)):

-

Fig. 2 Skewed parallel lines system

Hence, Eq. (25) can be reduced to

T= xeefn+ [‘—LJ Youfo— [‘;‘)i‘xetﬂfw] an

Since cot 8 = %L ,Eq. (27) becomes

.= Xf tfat (Vy, ofy—X¢ efy)cot @ . (Thompson

et al,, 1985) ®)

Even if the grid is orthogonal, the first term still
exists. However, an orthogonal or nearly orthogonal grid
is preferred.

4. Governing equation and boundary
conditions
4.1 Governing equation in generalized curvilinear
coordinates
Introduction to tensors and tensor analysis are
available in many books (Aris,1962; Thompson et al., 19
85; and Bird et al., 1987; etc.). Generalized curvilinear
coordinates are related to Cartesian coordinates by Eqs.
(1) and(2). In tensor notation, a point in Cartesian
coordinates is given by x ; (x ; ,X ; ,X 3 )and in general-
ized curvilinear coordinates is givenby £ (£, £2, E?)
The directed line segment dr,joining two points an
incremental distance apart (Fig. 3), is written
dr=Sgdf ' o
which defines the base vector,g ; ,in curvilinear

coordinates. Thus
ox 0

ag’ I3 F ot zag 9 &

where g ; and § ; are covariant base vectors in
curvilinear and Cattesian coordinates, respectively. g ;
can be written as a linear combination of § ; ,are tangent
to the coordinate curves but are not of unit length.

As the covariant base vectors are not necessarily

e
ey

|

]

!

i

xtd

Fig. 3 Base vectors, g, in generalized curvilinear
coordinates (Bird et al., 1987)
orthogonal in generalized curvilinear coordinates, cont-

ravariant base vectors, g ' ,are introduced by
§=VE= 2—5 31

The contravariant vectors, g ' ,are perpendicular to
the surface £ ' =constant. From Eqgs. (30) and (31),
8§ g=0;and (32a)
g&g=a8> (32b)
where §/ is the Kronecker delta, which is 0 if i #*
jand 1 if i=j. The covariant metric tensor is defined by

&°8=8" (33a)
and the contravariant metric tensor is given by
&g=g". (33b)

The determinant of g,; is called g Vg=
& * (gXg)= |/ || (see Eq.(6)).The cross (vector)

product of any two base vectors is

gXg= ;w}g e,-jkE“ or (34a)
i 1
IXg=F- 34b
EXE=T € s (34b)

where € ;;« = Lif ik = 123,231,312; ¢ ; ; = -1,
if ik =321,132,213;and ¢ ; ;, = 0,if any two indices are
the same. The contravariant metric tensor can be evalu-

ated from the covariant metric tensor as
. 1
g'=g - 5’=? (gxg) + (g.Xg]

N ,
= ( gimGin— 8in8in ) @)

using the identity
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AxXB) - CXD=A-OB D
—(@A-DE®- O. 60
The governing equation of ground water flow, has
to be expressed in non-orthogonal, curvilinear
coordinates. The hydraulic conductivity tensor can be
expressed

k-2 XKidid; =2 2x"s an

Performing an inner (dot) product of the cont-
ravariant base vector for generalized curvilinear coord-
inates, g ! ,and Eq.(37)yields
LU U R D

Performing an inner (dot) product of Eq. (38) with g"

gives
=ZZKij§i§j'§l'§n' 6
UsiI;g ! the definition of the contravariant base
vectors (Eq.(31)),Eq.(39) can be written

oy ey, ELE"
;zj:K“ axj ox; | w
Hence, in genera]ized curvilinear coordinates,
ZZZZKUax ax ., (41)

)

The hydraulic conductivity tensor has nine terms
(only three terms when the coordinate axes are aligned
with the principal axes of K in Cartesian coordinates;
extra terms are required in generalized curvilinear
coordinates).

Conservative expressions for the gradient of a
scalar, ¢ ,and for the divergence of a vector, g, in

generalized curvilinear coordinates are

Eqs.(42) and (43) can be approximated by non-

conservative expressions,

J—Z(g xg )¢;,| Zg $g and @

=%
gg.—zi‘,g % » 5

Tfoea) - “
Thompson et al. {1985) state" --- the quantity
(g X g) represents an increment of surface area, so

that [ (gXg) -gq) isa flux through this area. It is

clear that the difference between the two forms is that the
area used in the numerical representation of the flux in
the conservative form, Eq. (43),is the area of the
individual sides of the volume element, but in the non-
conservative form,Eq. (45), 2 common area evaluated at

the center of the volume element is used."

The non-conservative form of Darcy's law

9=-v-(K-V9)
using Egs. (41) and (44), becomes
q =”ZZZZZKU g a8 _m¢g'“
i jm
=‘§???"ﬁm*—‘n‘v’ @

using Eq. (32b). Substituting Eq. (47) into Eq. (45)
- m &
v vo- XIS (WE B un)

o i jm

Expanding Eq. (48) into three terms and using the

continuity equation gives
q‘_zzzl:ggl(u %ﬂ “Bubypym
') m
pReaxE I
????g&’%a&%gm'(&n)w%'=° @

Eq. (49)uses (K ; ; ) ¢m = O;this condition assumes
that the hydraulic conductivity tensor inside an element
is constant. Using Eq. (32a), Eq. (49)reduces to

+zzzz.xij[%?§—".] . @
TITETKEE

2 '(gn)§m¢€l =0.
i jm

Eq. (50) is a non-conservative form of the equation
governing ground water flow in generalized curvilinear

coordinates. If the curvilinear coordinates( £ ' ) are the
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same as Cartesian coordinates, Eq. (50) simplifies so that
only the first term stays. The second term expresses the
stretching of the curvilinear coordinates. The third term
expresses the rotation and/or angular deformation of the
curvilinear coordinates. The covariant and contravariant
base vectors are different in different cells. The third
term can also be expressed by a control function of
EAGLE (Thompson et al., 1985),which will not be
discussed here. Expansion of the third term requires the
Christoffel tensor which defines derivatives of covariant
and contravariant base vectors;hence,
0

P =§r§gk and (5la)
E) gi = _Zrkjg > (Slb)
where I",§ is the Christoffel tensor and can be written
k=1 kl(agll ngvl _ @ﬂ )
R e
Eq. (50) becomes
EETTRE S
n i
+zzzzKUL§%] b &

+§z;§§]{“6x o Tty =0

Eq. (53) needs to be modified for numerical
implemenitation as the coefficient of the second term is
not based upon £ i. Another expression can be stated by
starting the hydraulic conductivity to be expressed by the
contravariant base vectors by the definition of the

covariant base vectors(Eq. 30), so that

K= ZZZZM—“—SE )

Fo]lowmg the previous procedure, the governing

equation can be expressed as
Z%%;%ZKU 1 Ox; lmgk (gn)gk%m
PSS
RORRRRRY u’“-“(ﬂ b

kmn i

+ZZZZZZu

kmn joi

(55a)

X
_| kn lm _
gt b =

Apply the Christofel tensor on the first term of Eg.

(55a), the governing equation becomes

_ZZZZZZZKU Jax' lmgklkrl':‘kd‘gm

k"k mn

+222222agg[iéﬂ¢%m

kmn 3‘5‘

s

+ i"—‘_ kn Im ek = 0.
TEIRITNG B

Eq. (55b) is used for numerical implementation as
all terms are based on the generalized curvilinear
coordinates ( £ ' ).

4.2 Free surface boundary condition
The free surface location is determined by the

(55b)

recharge rate, hydraulic conductivity, and the effective
porosity of the porous medium for the unsteady state
problem. The free surface boundary condition in the
Cartesian coordinates is

OF (g—u
— 4+
a

J-VF:O, (6)

Pe
N=vertical recharge and F is the function represents
the free function.
4.2.1 Steady state
The recharge rate in Cartesian and curvilinear
coordinates is

u=§i;N. ZN g’ ‘ZZN-ax g, 67
The normal vector, </ F, of any surface can be

easily approximated numerically,is
VF=YF, 8, =Y Y F, Xigi )
i - S
Substituting Eqs.(47),(57) and (58)into Eg. (56)

ZZ T

DHR a"—’f_" o
which can be condensed as

pRRDRALS ag':ax ‘;’fx b

-ETTNR, 215 -0 ®

1 k m
4.2.2 Unsteady-state

The three-dimensional unsteady state free surface
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boundary condition can be expressed in Cartesian
coordinates, from Eq. (56),as

2l (3]

+Ku(%)2—%(KZZ+N)+ N]:O. &

The unsteady free surface boundary condition in
generalized curvilinear coordinates is obtained by
applying the chain rule and substituting Egs. (7)into Eq.
(61). The two-dimensional form is

% Yh 2 2ymYe vi
=K ng2_22n’s 2542
at ne = xx[ g ¢§ g ¢n¢§+ g ¢n

2 2 X2 X 3
+Kw(%¢§ -_"_;E%,;,g +Z€¢$‘} -(-T;(bé +ﬁ¢nJ(Kw +N)+N.

5. Conclusions

Estimation of free surface and ground water mound-
ing can be computated in the Cartesian coordiantes. The
major disadvantages are the accuracy depending upon the
grid size and the changing of the flow domain. Applicat-
ion of generalized curvilinear coordinates simplies the
estimation of the free and moving boundary because the
free and moving boundary locates on the grid points.
However, this method introduces truncation error. This
paper derived a complete tensor form of possion type
equation in the curvilinear coordinates,which included a
control function in EAGLE. This complete form satisfies
any grid generated by any grid generator. The computat-
ion code is available on request.
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three bubbles of 0.99 cm/sec. The bubbles appeared to be
moving in the center of the spacing, which is the
maximum velocity. 2/3 of this velocity (0.66 cm/sec) is
in good agreement with the average velocity, which is
equal to K ,,= 0.69 cm/sec.

6.3Conclusions

The Hele-Shaw model is a very useful devise for
visualizing unconfined, ground water flows, as the free
surface can be easily observed. From the analog relation,
the simulated hydraulic conductivity is porportional to
the square of the spacing. The spacing of this model is
the most difficult parameter to be controlled and to be
measured. The spacing of the Hele-Shaw model is not
uniform. It ranged from 0.109 inch to 0.119 inch for the
portion tested.

Numerical and experimental results are in good
agreement for the homogeneous aquifer. The maximum
height of mounding could not be observed when the
recharge rate was equal to the simulated hydraulic cond-
uctivity as the area under the recharge was filled with oil.
An important condition in this saturated region is that
there is no horizontal flow only vertical flow due to
gravity. Once flow passes through the free surface, hor-
izontal flow begins.
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