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ABSTRACT

Nine schemes incluing point SOR and conjugate-gradient-like methods for solving sys-
tems of linear equations were applied to simulate ground water mounding. The simulation of
the ground water mounding used the domain transform techniques and an iteration algorithm
to estimate the location of the water table. Since a lot of computations are required, the point
SOR is not appropriate for the simulation. The conjugate-gradient-like methods are thus con-
sidered. Among them, the conjugate residual method and its extensions are found appropriate
for solving systems of linear equations when the coefficients matrix is not symmetric. The
process of preconditioning for coefficient matrix of the system of linear equations showed a
great improvement on the convergence speed. Results of the simulation indicated that pre-
conditioned generalized conjugate residual method with the incomplete Choleski factorization
is the most efficient method for solving systems of linear equations when the coefficients
matrices are not symmetric.

Keywords : Ground water mounding, Finite difference, Domain transformation, Conjugate

gradient, Conjugate residual.
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INTRODUCTION

The purpose of this study is to apply and compare
nine iterative schemes for solving systems of linear equa-
tions. The computation time and the convergence
phenomena of simulating ground water mounding
applying finite difference method and domain transfor-
mation techniques by using point SOR and conjugate-
gradient-like methods are compared.

Ground water mounding is caused by localized re-
charge (e. g., from a spreading basin, irrigation, flooding,
or leakage from a lagoon or a land fill) to the saturated
zone in an unconfined aquifer. The shape and height of
the mound depend on many factors including the geo-
metry and the rate of supply of recharge and the geologic
structure, chemical and physical chgracteristccs (e. g,
hydraulic conductivity and its variations), location of
controls (e.g., drains, wells, streams, marshes), saturated
thickness and ambient(regional) ground water flow in the
apuifer. Prediction of ground water mounding is import-
ant in designing water infiltration systems. Models and
methods for predicting mounding and flow pattern due to
recharge to aquifers include: Dupuit-Forchheimer [1,7];
linearized potential flow [4]; boundary integral equation [
9]; complex variables [11]; finite differences [12]; and
finite differences and domain transform techniques {18,1
9], and so on.

For the numerical method, the governing partial dif-
ferential equation under boundary and initial conditions
is solved by discretizing the field into a collection of
points or elemental cells. The resulting differential equa-
tions are approximated by a set of algebraic equations on
this collection. The solution of this set of algebraic equa-
tions is used to approximate the solution of the partial
differential equation system over the demain. Many
techniques have been developed to solve the linear sys-
tems. Among them, the point successive over relaxation
(point SOR) method is frequently used in finite differ-
ence method. The simulation of ground water mounding
employing the domain transformation technique resulted

in the coefficients of the set of algebraic equations varied

with the new estimation of the free surface.Application
of point SOR is not efficient for this problem. Hence, a
more effective method was sought to solve the system of
linear equations from simulation of ground water mound-
ing.

Hestenes and Stiefel [8] proposed the conjugate
gradient method for solving sparse systems of linear
equations whose coefficients matrix is symmetric and
positive. A few years later, the conjugate residual meth-
od was proposed by Stiefel [14] for solving the unsym-
metric matrix of a system of linear equations. These two
methods and their extensions (e. g., generalized conju-
gate residual method) have drawn much attention to sol-
ve sparse systems of linear equations in recent years be-
cause of their flexibility and efficiency for various prob-
lems. The preconditioned conjugate gradient method
and the preconditioned conjugate residual method have
been found and applied in different fields [2,10,13,16]

MODEL/METHOD FORMULATION OF
GROUND WATER MOUNDING

Fig. 1 is a sketch of the flow field and boundary
conditions for steady recharge and flow through a homo-
geneous aquifer with a horizontal, impervious bottom
and finite, constant head lateral boundaries.

The governing equation, derived by substituting

Darcy’s law (q=-K « ¥V ¢ ) for velocity into the con-

tinuity equation (Y + g=0; assumes incompressibility

and a rigid soil skeleton), is
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Fig.1 Configuration of ground water mounding model
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V(K- Vq))=0where¢=-,;L+y=piezometric

] =hydraulic conductivity tensor.

Yy

The boundary conditions are:
¢=H, on x =0 and x = L (constant head);

34;=0 ony= 0 (no ﬂow); ................................. (3)
o=y ony = H (x) (p=0), where H (x) = water table
height: ......................................................... (4)
%_1:“:%(?_1_\0 “VF0 for | x-L, | SW oo (52)
%?:%(g) e IF=0 for | x=L, | ZWeveersreerns (5b)

Assuming instantaneous release from storage and no
capillary effects, where F=¢(x, y, )—y, N=—N j =re-
charge rate (assumed spatially uniform) and g =porsity.
The initial condition is

G=Hg WhEN t=0 «+eeererreremsinmmnininiiinincenne ©)
For aquifer with heterogeneities, the flux condition at the
boundary of the heterogeneity is ( as is illustrated in Fig.
2)

9 TR TV
Applying Darcy’s equation and requiring p,=p, (or ¢, =
¢2) at each point, Eq.(7) can be written as

K® Vo =K' Vo=

where n’=unit normal vector to heterogeneity boundary.
Since the flow domain is not regular in shape, the
transformation technique is considered with finite differ-
ence method. Transforming the problem and solving it
in a regular domain is a technique that has been widely

used to solve problems with complex shapes of boundar-

Fig.2 Condition for flow through heterogeneity

ies [6,17]. The procedure involves generating a grid in
the physical domain, transforming the physical domain
into the computational (rectangular) domain, and solving
the problem in the computational domain. Grid genera-
tion for the physical domain is Key to obtaining accurate,
reasonable solutions [17].

A distorted region in the physical domain is mapped
into a rectangular domain in generalized coordinate space
(Fig. 3). The governing equation and boundary condi-
tions are expressed and solved in computational domain.
The solution is then mapped to the physical domain. It is
assumed that there is a unique, single-valued relation
between the physical domain and the generalized coor-
dinate domain; for a two-dimensional problem, this rela-
tionis £=£ (x,y)and 7 =5 (x, y) with the inverse rela-
tion x=x( £, 7 ) and y=y( £, n ) [6].

Since the computations are carried out in the com-
putational domain. The governing equation and bound-
ary conditions have to be changed to the from based on
the computational domain coordinate £ and 7 as the in-
dependent variables. Using the chain rule:

d _df 9 ,dp 9
dx dx df dxdp

d _0F 9 dp d
dy dydEf dydp

the governing equation (Eq. (1)), can be rewritten
d 2 0 2 _
Ko (3 (B0 —20, ) —3% (o

i) | v (5 (P30 ) %

physical domain computational domain

Fig.3 Correspondence of the physical and
computational domain
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(g—g*z%_g%‘bf) ]___0 e (10a)

assuming K is constant in each sub region of the aquifer

(i. e., within or outside of a heterogeneity). If the aquifer
is isotropic, the governing in the physical domain is a
Laplace’s equation, and Eq. (10a) cah be simplified to

3—85'(;272’885 ~Burg2 )

4 n

3 (— _g7lz__i _%%_?%) Y R (10b)

where matrix tensor g, ; which links the two domains, is

€7257) (x;x +Vevn ) ]
2+y2)

(xfxw+yEYW) Xy
- 1 (773'*'77)') _(Exnx"'fy”y)]
]Q TlEanaE,n) (ERHED
=[g11 g”] ............................................. (11)
821 822

g is related to the inverse Jacobian by

__(_1)7{1 ............................................. (12)
and has a determinant

1/2 1
| g J‘ XY K Yp e eeesenanereenes 13)

In the same manner, boundary conditions in the gener-
alized coordinate domain are (assuming the computa-
tional domain is unit rectangle):

¢=H, on £=0and £ =1 (constant head) «--++++-+-- (14)

-—g—f—}gq)f +§f-5g¢,,=0 on 7 =0 (on flow boundary) (15)

¢= n on 7y =] (water mble) ........................... (16)
and Egs. (5a) and (5b) can be rewritten as

xx(‘y‘L‘I’e ‘Mﬁq’ 9: +XE‘¢2)
+va(%¢g_%ﬁi¢n¢5 +£gL¢§)
—(—%«pf +%¢”)(K,,+N)+N

w
<T ............ (17a)

90, K, (Yiez—Ra¥ey o+ 2Eg
arne"Kxx(g g g 20+ P ?:)
x2 o, 2x,x xt o
K, (50— 25,0, +3503)

at Ln,=

onn =1 for

—(-i?*’fﬁ‘%)“n)

onn=1 for =X (17b)

L
The equation for the flux boundary condition (Eq.

(8)) at the interface of heterogeneity, assuming the x-
component and y-component of the unit normal vector of

heterogeneity geometry boundary are n’, and n’,, is
ra Al A Al A
o]
#R [~ o

An algorithm to apply this method involves the following

’
K3’

— K ’
‘—K)l(xnx

steps:

a. Calculate the position of the free surface using the
Dupuit assumption.

b. Trasform the physical domain to the generalized
coordinate domain.(Consider the free surface as a
Neumann boundary).

c. Solve the transformed governing equation by finite
differences for ¢* (estimate of ¢) in the generalized
coordinate domain. If ¢*on the free surface, com-
pared to equation (4) is not within some criteria (e.
g, | (0*—9¢%)/d* | £10-8), the new boundary is
adjusted to y**1=0**1=¢* + A (o™ —9*)

where k = iteration number, 0< A <2 is the relaxation
parameter, and ¢*is the value computed for the initial
and each successive value of ¢* .Because step c is the
most time consuming part during computation, the itera-
tive scheme for solving systems of linear equations is

very critical to this model’s efficiency.

DESCRIPTION OF ITERATION
SCHEMES

The iterative schemes tested in this paper are for
solving a system of linear equations
AX=D et e 19)
where A, b and x are matrices. A and b are from govern-
ing equation and boundary conditions.

The conjugate residual method and the conjugate
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gradient method are considered to be the first two meth-
ods extended from the method of steepest descent. Even
though this method has been accelerated from the meth-
od of steepest descent, the convergence results are not
satisfied. Therefore, preconditioning is used. The idea
of preconditioning is to solve a system of linear equa-
tions transformed from Eq. (19):

—_ e =

A X=D eererreniiiiiii (20)

in which it is desired that the eigenvalues of A are more
clustered together than those of A [15]. Two precondi-
tioners are considered here: the diagonal scaling and the
incomplete Choleski factorization. The diagonal scaling
is a very simple preconditioning method. It is easy to
program since matrices related in the preconditioning al-
gorithm are divided by the diagonal matrix of A. The
Cholesky incomplete factorization is to separate a matrix
into three matrices that are multiplied together--the upper
triangle, the diagonal and the lower triangle matrices.
This matrix is used to be a preconditioner because the
result of the multiplication of these three matrices is very

close to A. A simple is illustrated below:

14 20 100 0)](100 0317142 0
4252 9 4100|090 0}||01189
2264434} |22 1 0{(004 0 ((00 1 16

00348 (00851](00047/(000 1
In the above exainple, the elements with zero remain
zero in the upper triangle and lower triangle matrices.
Method 1 : SOR

The algorithm of SOR is given by
O* 1 =0"+ w(®*—9")
where ¢* is the Gauss-Seidel solution, @ is relaxation
factor, a value between 0 and 2. @ can be chosen pro-
perly to reduce the iteration to the minimun. Detail deri-
vation is described by Strikwerda [15].
Method 2 : Conjugate Gradient Method

The conjugate gradient method is applied to any
symmetric and positive definite system [13,15]. The
scheme of the conjugate gradient method is
p°=r°=b-Ax°

X**1=xk+q  p*

r+=rk— q  Ap*
error= || r**' || /|| r° ||, if error < eps then stop (
usually,eps=10-° )
pti=r"t '+ B p"

rk 2
@ =R

pE+l |2
B«= I

The notation used in this paper is that lowercase Roman
letters denote vectors and have superscripts and Greek
letters denote scalar quantities and have subscripts. The
inner product is denoted by (.,.). The vector p* is called
the search direction to the k' " iteration.
Method 3 : Conjugate Residual Method

This method was applied to solve the non-sym-
metric systems of linear equations of which the sym-
metric part of the coefficient matrix was positive definite
[5]. The algorithm of the conjugate residual method is
p°=r°=b—Ax°
x**ti=x*+ a (p*
r*'=rk— q Ap*
error= || r**' || /|| r° ||, if error < eps then stop (
usually,eps=1078)
prti=r**'+p p*

re Ap*
K+1 Ak

b=~ G
Method 4 : Conjugate Residual Squared Method

This method is an extension of method 3 [13]. The
conjugate residual squared method can be applied to sol-
ve non-symmetric systems of linear equations. The al-
gorithm is
p°=r°=e°=b-Ax°
h**'=e*-q Ap*
x“*'=x*+aq (e +h**")
r*i=r*-q  A{e*+h**")
emror= || r**1 || / || r® ||, if error < eps then stop (
usually,eps=10"%)

pk+l=rk+l+B kpk

§Ar°,e*)
a= r° Ap
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___(Ar®,Ah*+1
B v=—"Th ApF

et i=r**'4 B hys
prri=e"tl+p (h**'+ B ,p*)
Method 5 : Generalized Conjugate Residual
Method

The generalized conjugate residual method is a
method for solving non-symmetric systems of linear
equations [S]. The algorithm includes an inner loop that
determines the search direction. - The size of inner loop
varies with problems.
p°=r°=b-Ax°
ve=Ap°
x**'=x*+q p*
re+'=r*-q .v*
error= || r**1 |} /|| r® ||, if error < eps then stop (

usually,eps=10-8 )

for j=0, ...... k
Ark+l’v)
B.i k+1 Vj,Vj

k n

prri=rett— j)_:olgj»xupj
k .
VEkHI == Arkt — jgoﬁ ik V?

Method 6 : Preconditioned Conjugate Gradient
Method [13]
The preconditioned conjugate method can be des-
cribed to be
ro=b-Ax°
p0=M— 1 rD
x*'=x"+q p*
r**'=rk—q Ap*
error= || r**1 || /|l r® ||, if error < eps then stop (
usually,eps=10"¢)
prt'=MT'r** '+ B p*

(r*,M-1r+)
A= P+, ApF

rk+l Molpk+!
N
where M~! is the preconditioner.

Method 7 : Preconditioned Conjugate Residual
Method [13]

po=r°=M~"'(b—Ax®)

xX**'=x* 4 a p*

r**'=r—a M~'Ap*

error= || r**! || /[ r® ||, if error < eps then stop (
usnally,eps=10-5 )

prt'=r*'+p (p*

rx,Ap*

@ = A
k+1 -1 k

Bk=" Al’p "MTR'))AP
Method 8 : Preconditioned Conjugate Residual
Squared Method [13]
p°=r°=e°=M-"' (b—Ax°)
h**'=g— a M~ 'Ap*
x**'=x*4+a. (e +h**")
r*+i=r<—q ,M-'A(e*+h**")
error= || r*** || /|| r® ||, if error < eps then stop (
usually,eps=10-¢ )

pk+|=rk+l+a kpk

_ sAr",e"?
Q= M- pk

L Ar®,M-1Ahx+!
B.=  M-TAp

et '=r**'+p hs,
prri=ett By ("4 B LPY)
Method 9 : Preconditioned Generalized Conjug-
ate Method [10]

The algorithm of the preconditioned generalized
conjugate residual method is
p°=r°=M-"' (b— Ax®)
v°=M-'Ap°

rk,vx

x**1=x*+ a p*
r“*l=r*—q,v*
error= || r**1 [} /|| r® ||, if error < eps then stop (

usually,eps=10-8 )

_ M“Ar“fl,v"
vi,vi

Kk
pk+1=rk+|__ _ZOB P T
i=-

L] .
vk+|=M—|Ark+|_j§° B Joxar Vi
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NUMERICAL EXPERIMENTS

Three ground water mounding examples are tested
here. The first and second examples are for a homogen-
eous aquifer. The first example has a recharge width (2
W) of 20 m, the center of the recharge is located at S0 m
from the left boundary (Lr) steadily supplying water at a
rate (N) of 0.001cm/sec to an aquifer of 45 m initial satu-
rated thickness (H) and 100 m long (L). The hydraulic
conductivity (K) of the aquifer is 0.1 cm/sec. This pro-
blem is discretized into a 48 by 21 grid points. The sec-
ond example changes the left boundary to be 50 m,
which gives the regional flow, and the recharge rate is
changed to be 0.01 cm/sec (10 times larger than that of
the first example) and uses the same grid as the first
example. The third example is for a layered aquifer.
This example has a recharge width (2w) of 20 m with its
center located 50 m from the left boundary (Lr) and
steadily supplying water at a rate (N) of 0.1 cm/sec to an
aquifer with 45 m initial saturated thickness (H,) and
100 m long (L). The thickness of the lower layer is20 m.
The hydraulic conductivity of the lower layer, K, , is 0.3
cm/sec and the hydraulic conductivity of the upper layer,
K3, is 0.1 cm/sec.Three grids were used for the third
exampie, they are 21 by 21, 41 by 41, and81 by 81.
Nine iterative schemes were tested for ground water
mounding simulation. These schemes are:
SOR : point successive over relaxation method
CG : conjugate gradient method

ICG : preconditioned conjugate methos with in-
complete Choleski factorization

ICR : preconditioned conjugate residual method
with incomplete Choleski factorization

ISCR : preconditioned conjugate residual squar-
ed method with incomplete Choleski fac-
torization

IGCR : preconditioned generalized conjugate re-
sidual method with incomplete Cholesko
factorization

DCR : preconditioned conjugate residual meth-

od with diagonal scaling

DSCR : preconditioned conjugate residual squa-
red method with diagonal scaling
DGCR : preconditioned generalized conjugate
residual method with diagonal scaling
All calculations using double precision were carried out
on HPRISC 9000/710machine, using convergence criteria
of 1078,

RESULTS AND DISCUSSION

Fig. 4 indicates error vs. iteration number for the
first example defined in the previous section. For this
homogeneous aquifer case, the worst methos is CG. It
showed that CG is almost impossible for the problem to
converge because the coefficients matrix of the system of
linear equations is not symmetric. The coefficients mat-
rix of the system of linear equations of this homogeneous
case can be set up to be symmetric but it is not the way to
be solved. SOR, ICG and DCR took about the same iter-
ICR, ISCR and

DGCR indicated very similar results and they were much

ations for the problem to converge.

better than the previous four methods. In a word, IGCR
is the most efficient method shown from the comparisons.

The error of IGCR decreased very quick with the increas-

4 ICCG
soeee ICR

-==-= ISCR
eeese IGCR
++++ DSCR
v+ DGCR
— CG

T T T

1 10 . 1! 10°
Iteration Number

Fig.4 Error vs. iteration number of various
schemes for exaple I
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Table 1. CPU time of various methods for example I and I

methods IGCR | ISCR | ICR

DGCR

ICG | CG | DCR | SOR | DSCR

example I
CPU time 7.8
(sec)

22.4 | 40.5

33.6

1290.1| -— | 568.5 | 522.0 | 207.2

example II
CPU time
(sec)

122 | 45.1 | 824

56.7

1013.5] -— | 958.8 | 486.5 | 261.8

ing iteration number.

The comparisons of computation time for example
I and II is shown in Table 1.The results showed that
the most efficient method is IGCR.

Fig. 5b and S5c show error vs. number of iteration
for the third example.Since this simulation is for layered
aquifer, the flux condition of the interface of the upper
and lower layers makes the coefficients matrix of the
system of linear equations even more un-symmetric
comparing to the first and second examples. Likewise,
CG took a very long time to converge even the problem
is set up to be solved using a small number of grid points

ICG converged faster than CG but it is still inefficient.
SOR is the simplest method but is not good for this prob-
lem. IGCR is still the most efficient method for example
II. (Fig. 5a and 5b).

The results in Table 2 also show that the most effic-
ient method is IGCR. This method is aboﬁt 5 times fast-
er than ICR, ISCR and DGCR and much faster than
SOR. These numerical experiments show that IGCR is
particularly good at solving problems needs a lot of
computation.

The preconditioning for the conjugate-gradient-like

methods showed a great improvement at solving system

It:eoration Il?umber
Sa. 21x21 grid points problem

T ....71031

Itzeoration ﬁumber h
5b. 41x41 grid points problem

Fig.5a and 5b Error vs. iteration number of various schemes for example I

Table 2. CPU time of various methods for example Il

method | IGCR | ISCR | ICR | DGCR | ICG|{ CG |DCG|] SOR |DSCR
grid

21x21 1.1 2.6 43 6.9 513 | 4101.7 | --- 4.6 -

41x41 9.1 45.0 | 59.5 — - — - 67.5 -

81x81 | 112.8 | 716.8 | 856.7 | 1162.0 | --- === — | 11414 | ---
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of linear equations. Even though CG is not suitable for
solving system of linear equation when the coefficients
is not symmetric, ICG can be applied to solve un-sym-
metric matrix owing to the preconditioning. According
to the author’s experience, IGCR is the most efficient
method tested here for solving system of linear equations
especially when the coefficients matrix is not symmetric.
In other words, IGCR is suitable for solving complex
problems and for problems when mass computation are
required. For simple problems, all the preconditioned
algorithms are acceptable. For programming, point SOR
has its advantages because the algorithm is the simplest.
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