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Study on Non-linear Deflection of Reinforced Concrete
Using Finite Integration Transform
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ABSTRACT

This study aimed at an analysis of the mechanical behavior of reinforced
concrete beams under bending forces, ranging from the elastic domain to the ultimate
critical state. As for the mecharﬁcal property of the concrete, we adopted the Duffing
model, in which the stress-strain relationship is non-linear. The results of our study
prove that the use of a Duffing non-linear stress-strain relationship is appropriate.
The study also demonstrated that deflection of a reinforced concrete simple beam
between the elastic and ultimate states can be obtained by calculating the curvature of
any given point based on its non-liner characteristics and obtaining a deflection

equation from the curvature the finite integration transform.
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1. INTRODUCTION

The ultimte state design method has gradual-
ly become a major approach to design civil
engineering structures. This method takes the
approach most suitable for each of the various
ultimate states which may arise as a result of the
loading applied to the structure. Generally, a
study of a structural member’s profile is carried
out with the focus on the ultimate critical state
of its rupture profile. It is, therefore, necessary
to comprehend not only the strength of the
member, but also its non-linear behavior and its
mechanical behavior beyond the elastic domain
up to the ultimate rupture state.

The aim of this study is to clarify the me-
chanical behavior of a reinforced concrete mem-
ber under bending force starting from elastic to
ultimate critical states. In this study, Duffing
model is adopted as the non-linear stress-strain
relation to clarify mechanical behavior. The
study also present an analysis for the deflection
of a reinforced concrete simple beam from elastic
to ultimate states. The procedure is to obtain by
calculating the curvature of any given section

based on the above non-linear characteristics an -

and to obtain the deflection from the curvature
through the finite integration transforms.

2. PREVIOUS STUDIES

A number of equations have so far been
used in the study of concrete stress-strain curves.
Examples are seen in the experimental equations
by Sakal and Fujitaz) in which stress o is re-
presented by a cubic expression of the strain, as
shown below. (€p: strain at time of maximum
compressive stress) Equation by Saka (concrete
aged 28 days):

°c=A1€c+318%+C38% 1)

where, 4; = E, = (2367 + 0.00380¢g) X 103,
B, =(~3.178 + 0.0080.5) X 108,
C; =(10.67 — 0.040605) X 1010

Equation by Fujita:
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where, £ = &, elastic coefficient

c28ca
o = 3 04
Ecy=3.1X10%00p,
0 Maximum compressive stress
Given below is a general equation for the
neutral axis ratio k¥ and moment M, used in
strength calculations at the critical cracking state

when a reinforced concrete member of sectional
porfile (b X k) is subjected to a bending force?).
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Ratio of tendsile reinforcement: P.. = A4 ¢../bh

Ratio of compression reinforcement:
Pr=Agc/bh

Ratio of modulus of elasticity: n = £/Eg
E - elastic modulus of concrete

E: elastic modulus of reinforcement

A ST tensile reinforcement content

A sc: compressive reinforcement content
Compression-side cover: ¢’ = u'h
Tension-side cover: ¢ = uh

Maximum tensile stress:
Ocr =24+0.052 (o, — 200)




Strain at maximum tensile stress: €., =(18.5+
0.020,7) X 10 (0. is in kg/em?)
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where a o’ = 0.5, § =0.593, ot = 0.783, f.= 2/3

The neutral axis ratio k¥ and moment M,,,
used in strength calculations at the member’s
ultimate state are expressed by the following
general equation3):

In the single reinforcement case, the cal-
culation is performed by adopting the following
two equations considering the relationship
between reinforcement yield stress Ogy and the
stress g acting on the tensional reinforcement.

Case I: Ogr = Ogy
P.o
0Gp
M,, = okbdiocg(l— k) (6)

Case II: Ogr < Ogy

P E P_E
e=_ Frfs&u TESSCU(2+

2000p 200 p
PrESE
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aoCB
M, = akbd?o (1 — k) (8)

where €., is the ultimate strain, and d; the
effective height.

For double reinforcement, the following
three equations are used considering stress o
acting on the reinforcement under compression.

Case I'; Ogr = Ogy> asc< Ogy

Prosr —PcEstey {1PT0ST_PCES8CU)2
2a0,p N 00 p

+ McEsEcy j0s
Xocp
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=hd2 S,
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k — 1-—
+PCES€CU -——-—-( “l( “)} (10)

Case II': Ogr = Ogy> Ogc = Ogy

k= Progy

AOcgy

—P.o
C°SC (11)

M, =bd? {okop(1 — BK) + PLog(1 — w}

(12)
Case lII": 05 < ogy, 05, = gy
_ PrEfoy tPogc
200
+{(PTES€CU tPcoscir  Prstey Jos
2000p QOrp
- (13)
= bd?
M, =bd; {ako p(1 — Bk) + Prog (1 — ygl} )
4

where o= 0.8095, §=0.4160, u=e/d,

Methods of calculating the deflection of a
reinforced concrete beam under short-term
loading largely consist of methods which con-
sider the elastic load jut before cracking and
those which cover the period from the start of
cracking up until the level where the reinforce-
ment yield stress is reached. For reference, the



following three major calculations are typically
adopted for the calculation of delfection after

cracking®39)7:
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where, bending moment just before cracking:

[M, =09 (0:5)1/(h - y,)]

M, : maximum bending moment after cracking

L: effective span

B: deflection coefficient (5/48 in the case of an
evenly distributed load and 1/12 where the
load is concentrated) M, =M — M.

The sectional secondary moment before and:

after cracking can also be given by:
Before cracking (elastic load method)

'= (Bh*[2) + n(Agy Xd, + A g X €)

19
71 bh+n(Ag +Ag.) (19)

I = (303 +y]) +n {Agy(d, -,
L+ A, - )} (20)

After cracking (from cracking to the reinforce-
ment yield point)

Ao +Aq) nAqrtAq-)
ylz”{ STb SC}+[{ STb SC}2

PN, + A} )

3
by
_ by "2 2
Ie,= —=+ndge(y, — )" +ndg(d, —y,)

3 (22)

3. DUFFING STRESS-STRAIN
RELATIONSHIP

In cases where the stress-strain relationship
for structural materials is non-inear, many
mathematical models have been used to express
the non-linearity of the curves. In modeling such
stress-strain curves, the choice of approximation
is very important and depends on the purpose of
the structural analysis and the required accuracy.
In a general discussion of structural analysis,
expressional models as close as possible to the
actual stress-strain relationship may sometimes
be required. In either case, straight-forward and
accurate matehematical models are likely to be
better accepted.

Let us consider the relationship between
stress and strain as a curve. That is, the relation-
ship between strain € and stress o is 0 = f(£).
Here, € is very small, and thus o can be expressed
as a Maclaurin expansion of o.

2 €3
g =f(0)€ + f(0)E +2—‘ "(0) +3—' (V)
‘ ' (23)

When no external force is acting, the stress is
zero. Thus, f(0) = 0. This function f(£) is as-
sumed to have reversibility. Then, assuming that
the rupture strain is sufficiently small and that
terms up to g3 are considered, equation (23) can
be expressed as a Duffing spring.

3
o=f(0)E + %— “(0)=AS — BES  (24)

Constants A and B in equation (24) are deter-
mined as follows.

First, constant A is assumed to be the elastic
coefficient E. Then, the range of strain within
which a recovery reaction in the component
parts of a member exists is considered to be €.
Eventually, the relation constant B = E/3SB is
obtained from d6/0€ = 0. Therefore, the rela-
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tionship between stress ¢ and strain € can be
given as follows:

3
0=E(€_3_812; 25)

Supposing the restoring force f is expressed by
the 1st and the 3rd polynominals of the displace-
ment x;
f=oox + x> (25.2)
where, o, are the spring constants. It leads to
the forced non-linear vibration as follows:
dx

m—5 tox+ Bx3 = F cos(w?)

— (25.b)

where, FO: amplitude of the input force
w: angular velocity of the input force

m: mass of the vibrator

In equation (25), the spring force is expressed by
the 1st and 3rd polynomials of displacement. In
this study the stress is related to the 1st and 3rd
polynomials of the strain, hence it is name as
Duffing type.

When a member has a sectional profile (b X
h), it is considered to have a surface bearing.
Thus, moment M is obtained as follows from the
relationship expressed in equation (25).

h/2 Ebh? &3
= dy=— (g ——3) (26
f_h/zoyy P (eU 582) (26)
o CB --------- Pt R
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Fig. 1. Stress-strain relationship of concrete.

where, y: distance from neutral axis (€h/ &)

€y edge strain of the side under com-
compression

The upper edge strain at the ultimate value
of M is dM/d €y = 0, which can be derived from
equation (26), while €;; can be expressed as fol-
lows:

5
g =) g Q7

This value of €, is a form of critical compressive
strain.

Then the relationships expressed by equa-
tions (25) and (27) give the stress-strain curve for
the the concrete, as shown in Figure 1. The
stress-strain relationship of Figure 2 is used in the
JCI Concrete Specifications (3.3.3), which are
used as the basis for structural analysis.

4. COMPARISON BETWEEN STRESS-
STRAIN RELATIONSHIP OF CON-
CRETE AND THE DUFFING
MODEL

Strictly speaking, the stress-strain relation-
ship for a concrete structure is non-linear from
the very beginning of loading. However, a struc-
tural member is defined as a linear elastic body
during the initial stages of loading, and its elastic
modulus varies with compressive strength 0.
Researchers from Japan and abroad have pro-
posed several equations to express the relation-
ship, in concrete, between elastic modulus and

0 Es8B E

Fig. 2. Stress-strain relationship of reinforcement.
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Fig. 3. Comparison of equations for E..

strength. A comparison of these proposals is
given in Figure 3. The JCI value can be seen to
lie almost in the middle. For this reason, the
value £ proposed by JC1 is taken as the elastic
modulus to be used in the Duffing equation in
this study. Vaious experimental equations for
the concrete’s stress-strain curve are also pro-
posed. In the study, the two cubic equations
proposed by Saka and Fujita are chosen for com-
parison. The results are illustrated in Figure 4.
The difference, as seen in these figures, is very
small. Thus, the Duffing equation adequately
describes the concrete’s stress-strain curve.

I Before cracking

5b00'c(kg/6m’

‘1. Duffing
. 2. Pujita
Saka

g

09082

Fig. 4. Stress-strain relationship of concrete.

5. REINFORCED CONCRETE SUB-
JECT TO BENDING FORCE

Figure 5 shows the dimensions of a rein-
forced concrete beam and the stress distribution
within it. The horizontal balance conditions over
a cross section before cracking (from states I to
II: Type 1), ZH=T,+Tg— C— Cg =0, gives
the balance of the beam profile as follows:

2 .
j(')” 0pqbdy + EcAgrb(h -y, —e)
0 .
+f_y1 O by +EAG Uy, —~€)=0  (28)

Where, Y. curvature, € = Yy, y: distance from
neutral axis, 4g: total area of reinforcement

O After cracking IIII Rupture domain
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Fig. 5. Stress distribution in beam.



under tension and, 4 sc' total area of reinforce-

v
ment under compression. Given that Z =-€TJ;1:
Ecc vy, _ Eer vh
=, 7' = =——ft=—=L 7+ 7' =7, the fol-
e € Ec Ecp

lowing equation, expressed as a cubic equation
of Z’, is obtained by substituting o, from equa-
tion (28) into equation (25):

A yAAL , z? 1 . ,

Z.o_Z= — — > —n(P, Pr-P
5 +Z{12 5 n(Pop' + Pr — Pru)}
z Z ,

+E—'1—2-+nZ(Pc-PC# + Pru)=0

(29)

Where n = ES/EC, e =hy,7 <8’CT/€CB, neu-
tral axis y, = hZ/(Z + Z'), curvature § =(Z +
Z')Eop/H, and £’ cr: maximum tensile strain of
the concrete.

Since the resistance offered through internal
forces must equal to the bending moment M
exerted by the external force, the balance of
oments for the neutral axis between states I and
II is expressed as:

1/2 3.3
M= / Ecb(yy — -tp—zl—)ydy + EsAst¥(h — w1 —€)?
0 3503

'/"sys ) "2
361, Yydy + EsAst(y — ¢€')

+ [ Boblwy -
(30)

Also the following equation is given by mani-
pulating the relations discussed earlier:

. M
M= Ecbh?ecp
_ZP4+ZP (254255 , nPc{Z - (Z +2))?
B 3(Z + 2') Z+2

nPr(Z' — Zp— Z'u)?
zZ+ 7

(1)

For states II to III (cracking of Type 2 occurs),
the stress in the reinforcement is Ogr < Ogy: Ogc
< Ogys Ocr = o cr SO the following equations
can be obtained:

2R2n{—-Pc/AI-—PT(1 —ﬂ)} +2RnZ(Pc +PT)

+ZZ__zI2__(ZA__le)/6 = 0 (32)

. Z2+2ZB—(Z°42%)/5 nPo(Z - Ru')?
M = 3R? + R
nPr{R(1 — u) - Z}*
t R
(33)

where R =Z +Z' = Yh/€.p, Z' =€ (/€ p

(constant).

Although the yield stress is reached for ten-
sile reinforcement, compressive reinforcement as
the ultimate state is approached, is in a state of
Osr = Ogy» Is¢ < Ogy> O¢cr = s (Type 3),
and no yielding occurs right up to the ultimate
state. Also, the second term of equation (28) is
0gyA g7, leading to the following balance:

— 2R*nPyy’ + 2R(nPcZ — Prn) + 2° — 27

—(Z*-2%/6=0 (34)

MI

_Z3+42°—(2°+2")/5 nPc(Z - Ry)
N 3R? v R

+nPr{R(11; p)— 2} (35)

When the tensile reinforcement and compressive
one reaches the yield point, the second and
fourth terms of equation (28) in ggr = 0gy, 0g-
= Ogy, Ocr = O cp, (Type 4) are 0gyAor, and
OgyA g, respectively, resulting in the following
values for R and M’ from the balance equation:

_ Ececp{Z* - 27— (2' - Z2")/6)

R 36
Z(PTGST - Pcdsc) ( )
22+ 2°-(2°+2%)/5 n'Pc(Z - Ry)
M= 3R? + R
L 1Pr{(R(1 - ) - 2) G7)

R

where 1= UST/EC§CB’ 7' = 0gc/E-Cp

When the compressive reinforcement yields

before the tensile reinforcement, the fourth term
»

of equation (28) in 0y <0 gy, Ogr = Ogy, Oy

= 0 or, (Type 5) is gy A g, thus given the fol-
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lowing balance equation:

— 2R*nPr(1 — p) + 2R(n'Po + nPrZ) + 2% — 2"

—(Z*-2"/6=0 (38)

M = 24+ 2% - (Z2°+ Z%)/5 + 7' Po(Z — Ry')
= 3R R
nPr{R(1 - p) — Z)?
+ R

(39)

In the case of single reinforcement, P is taken
as zero according to the analysis described in'Sec-
tion 5.

6. NATURE ANALYSIS OF REIN-
FORCED CONCRETE SUBJECT TO
BENDING FORCE

When a reinforced concrete beam is
subject to a bending force, the strain €, on the
compression side increases from zero to £,;. No
cracking occurs on the tension side for strains
such that &, <&'r. However, when the load
rises from Type 1 to reach ECT = E'CT’ the in-
fluence on the member changes dramatically
from that point on up to the yield point. The
process from cracking to yielding of the rein-
forcement under compression and tension will

] O Trpe Hlocr=0ct’)
L ——— Q]
A}Type.‘!
Yol O Type |
A x Type § gle re‘“(orceuenl
sin

L2
Cracking lisit

~.

Double reinforcement

r-

Ultimale state®’

" L e i — ol 1 i A

0

P a2

Fig. 6. Relationship between reinforcement ratio
and neutral axis.

3

be analyzed using equations of Type 2, while the
range from cracking to the ultimate state will be
analyzed using equations of either type 3, 4, or
5.

In the case of single reinforcement, Type 3
is equivalent to Type 4. Calculations will be
done using Type 2, 3, or 5, depending on which
has a smaller R value. Also, in the case of
double reinforcement, calculations will be done
using either of Type 2, 3, 4, or 5, whichever has
a smaller R value.

As shown in Figure 6, the values of neutral
axis ratio given by our theoretical equations are
almost the same as those given by the generally
accepted theorem. Curvature can also be obtained
from the bending strain. The results of doing
this are shown in Figure 8. The relationship
between reinforcement ratio and moment just
before cracking is almost the same when ob-
tained using our theoretical equation as when
Fujita’s equation is used. In the ultimate state,
the results given by our equation differ little
those obtained by the generally accepted equa-
tion when the reinforcement ratio is 0.08 or less,
while as the reinforcement ratio increases, the
difference widens. However, since such condi-
tions do not exist in actual designs, our theory
proves to be appropriate.

300(kg-cm) «
] O Trpe 1{oci=0acr’) /
g J1vpe 3 / /
e A Type d g
L A x Type § o“\
&
ka
- gx

nt

20
le reinforcer® g Vinit
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L
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poub g
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A 1 i

E‘ 1 1 J i
0 2
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Fig. 7. Relationship between reinforcement ratio
and moment.
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Fig. 8. Relationship between curvature and
moment.

7. CALCULATION OF DEFLECTION
BY FINITE INTEGRATION TRANS-
FORMS

The orthogonality of a since function by
finite integration method is given as follows:

If <y is an variable ranging from zero to s,
then any function including 7y makes secnse only
when “y takes the prescribed integer. The integra-
tion is shown as:

s . amr , mnr
/o sin - sin Az =¢ (40)
where,i,m=1,2,3, .., 5. Taking Ax =¢
1 sinw(i— (i —m)
¢= 4 sm1r/s(z—m){1+cos s E—
—~cos 7(t —m)+ cos (i + m)] (41)
So that
$/2 t=m
(= { 0 i#m (42)

The inversion formula is established as follows;

Zf(z) sm-—-— = ¢(i)

~ (43)
§’i¢(z sm— = f(z) (44)

1=

Disregarding the deflection of the beam due to
shearing force, it is allowed so long as A/L is
smaller than 0.1. The deflection W is related to
the curvature ¥ as follows:

Fw
=Y $)

where A is the largest size of hthe beam cross
section and L is the span length of the beam.
Considering that W is a continuous function of
x for 0 < x </, equation (45) can be trans-
formed into a difference equation:

Wi = 2W, + W, ~
(Az)? R

where Ax = I/s, 5 is the division number of /, W, .
deflection of r-th point, and ¥, : curvature of r-th
point. If ¢ _is given, W, can be calculated by the
above equation by means of “finite integration
transforms.”

The deflection, whether elastic or non-elastic,
is conventionally analzed using the elastic load
method. However, the distribution of curvature
along the axis of a reinforced concrete beam is
not simple, and thus the conventional method
leads to inaccurate analysis. We now propose a
method of deflection analysis based on the
curvature in the casse when a simply supported
reinforced concrete beam is subject to a bending
force. Firstly, the curvature ratio J at a given
point X on a reinforced concrete beam is ob-
tained using the theoretical expressions discussed
in Section 5 and 6. If the span L of a simple
reinforced concrete beam is equally divided into
S section and the deflection at the 7 th point is
W, then equation (47) can be obtained from

r’
central difference calculus. Here, m is defined

(46)

as (d*W/dXx?).
aw, W, -W,
dax = AX
W, W,y —-2W,.+W,._,
where AX = L/S, m, = w/xpo, Y, maximum
curvature.
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The theorem of Finite Integration Trans-
form gives the conversion equations (48) and
(49).

S5-1 :
Y. Wesin =g = ¢ (48)
r=1

2 1 T

= ¢;sin— =W,

g tsng =W )
where i and § are positive integers.

When function W, in the above equations is
replaced by curvature m =

Sf m, sin ’—’;1 = ¢ (50)
r=1
Z $isin— =m,  (51)
l—l

Replacement of ¢, by W; completes the con-
version equations (52) and (53).

W T (52)
W, = rz_; W, sin 5
2! . imT
W, = 3 ; I/Vi'sm-—s;— (53)

Here, substituting equation (53) equation (47)
gives equation (54), as follows:

Wi ~2W, + W,y

S-1 .
=2 5> Wilsi —-’"(T; D _ogin ™
1—1
+sin z7r(rS- 1)}
2 inr

=3 2 W'{2(cos — —1)}sin <

(54)

By letting D, = 2{1 - cos(in/S)}, equation (49)
yields the following equation with the aid of
equations (17) and (54).

2

W!D;s n-—-—(AX)"m, (55)
sg S

Substituting equation (51) for m, in the above

equation gives equation (56).

E W!D; sin = = (AX)2 E $isin —(56)
=1 v.—l
2 Pi
Wi = (AX)' D; (57)

Also substituting equation (50) and (53) for ¢,
and W; in equation (57) finally leads to equation
(58).

25 -1
W, = SE(AX)Z Em,sm

=1

)sm inr (58)

which assures us to calculate the deflection of
the beam by the curvature value of m,.

8. EXAMPLE OF DUFFING ANALY-
SIS OF NON-LINEAR BEAM

If we take the mechanical characteristics of
materials comprising a beam to be non-linear-
that is, if the mechanical characteristics of com-
ponent materials, such as composite materials,
and cracking are not considered, an analytical
model with sectional profile width b and height
h is used for analysis. First, the moment M when
the stress-strain relation follows equation (25) is
expressed as:

'/’ 59
M= / ) %)
Mo M ¥ L
T ELve o 3Inpoely  (59b)

where 1, = bh3/12,14 = bh5/80, and maximum
curvature Yo = 283 /h.

Assuming that m = d//ll/o leads to the fol-
lowing equation:

m3

'=m— — 59
M=m 5 (59)

As indicated by this equation, if the bending
moment when the non-linear curvature ratio m
equals 1 is the bending moment when stress is
maximum, m’ = 4/5 and for the linear case, M’ =
1.
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Next, supposing the analytical model is such
that load is equally distributed over a simple
beam of span L = 5m, the relationship between
the moment M’ at a given point X and curvature
can be expressed as:

MM _4_d? 32

ELv, 5 8 1=z 60

That is, the moment M’ at any point X will be:

M gX(L-X) 16X(L-X)
T 2ELypy  BL*ElLy

If equation (60) is linear for the moment M’ at a
given point X on the beam, the cubic term need
not be considered. If it is non-linear, the cubic
term must be considered when calculating the
curvature ratio m. The deflection in both linear
and non-linear cases can be obtained by replacing
m as defined above with m_ in equation (58) for
the finite intergration. The results thus obtained
are shown in Figure 9. These values are deflec-
tion W divided by maximum curvature \1/0.
Taking a case of b = 35cm, h = 70cm, og =
300kg/cm2, and £ = 3 XIOSkg/cmz, for ex-

(61)

ample, €, = 0.0015 according to the relation
expressed by equation (25). That is the maxi-
mum load q,,4x = 329.28kg/cm, Yy = 2€5/h =
42875 X 10°. Table 1 gives a comparison
between central deflection for each load incre-
ment up to the maximum load and the results
obtained by the elastic load method.

Table 1 shows that the linear version of the
finite integration transforms calculus and the
deflection obtained by the elastic load method
are almost equal. That is, the results obtained by
the inversion formula (58) is sufficiently accurate.
As the load_ increases towards the ultimate value,
the comparision of the linear and non-linear
results indicates that a difference in curvature
and deflection arises more between them.

For a reinforced concrete beam, the curva-
ture along the axis is complicated by the interac-
tion between reinforcement and concrete. It
cannot be determined just by considering the
elastic load or ﬁsing equation (60), a non-linear
curvature ratio equation. Therefore, the bending
moment and curvature of a reinforced concrete
beam as dicussed in Section 5 is analyzed to
obtain the relationship between any given bend-
ing moment and the resulting curvature.

x10*

ko) [T T T I I T T Let us use as an analytical model a simple
) ‘,cé beam with a span L = 5m, Ocg = 300kg/cm2, E.
N = 3.0 X 10%kg/em?, o5y = 2400kg/cm?®, and
Ae,oL analyze it for two cases: single reinforcement (P.;
= 0.01) and double reinforcement (P = 0.6Pr).
) The curvature YA can be obtained using the
2.084|-Linear method discussed in Section 5. Then from
2447 Non-linear Figure 8, representing the relationship between
moment and curvature, the curvature at any
Figur 9. Deflection. given pfomt. on the beam can bfa fo‘und as illus-

trated in Figure 10. Next, substituting curvature

Table 1. Comparison of Deflection by Two Analysis Methods (in cm).

Load 60% 70% 80% 90% 329.28
Analysis method kg/em | kg/cm
Elastic load method 0.5357 ] 0.6250 | 0.7143 | 0.8036 | 0.8928
Finite Integration Transforms linear equation 0.5359 | 0.6252 | 0.7145 | 0.8038 | 0.8931
Finite Integration Transforms non-linear equation | 0.5582 | 0.6629 | 0.7753 | 0.9001 | 1.0486
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Figure 10. Reinforced concrete curvature.

yh for m, in equation (58) gives the deflection
at any given point, as shown in Figure 1.M_ x/
bh? due to the inter-span central bending mo-
ment for a beam with a profile b = 35¢m and & =
70cm just before the reinforcement yields is
15.798kg/cm2 for single reinforcement and
15.940kg/cm2 for double reinforcement, as
shown in Figure 8. The maximum deflection just
before the reinforcement yields when the sec-
tional secondary moment is equal to the pre-
cracking design bending moment M ., as expres-
sed in ACI equation (16), Branson’s equation
(17), and CEB-FIP equation (18), is compared
with the theoretical values obtained in our study
in Table 2. The ACI equation supposes that
cross-sectional rigidity is constant all along the
beam’s length, while Branson’s equation uses a

|
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‘\\Just before reinforcement - - r/f

/'/

.\\ reaches yield point
4

Double T.,

s

=

-

- -Ullllale stale

150(cm)

" Figure 11. Reinforced concrete deflection.

value of sectional rigidity which varies according
to the bending moment. The CEB-FIP equation
obtains regidity by dividing the situation into
pre-cracking and post-cracking states. This
means that the rigidity along the dotted line
OYE in Figure 10 is obtained by a conversion.
In this case, for an evenly distributed load, the
difference in area between the dotted line OYE
and theline OCDYE is small, and thus the error
in deflection from our theory becomes small.
However, when a concentrated load is placed at
the center of the span, the difference between
the dotted line OYE and the line OCDYE
widens, and eventually error in deflection value
increases. When the reinforcement collapses,
yielding of the reinforcement leads to a rapid
increase in curvature. At this point, conventional

Table 2. Comparison of Maximum Deflection before Yield by Three Analysis Methods (in: cm)

Single reinforcement (P = 0.01) Double reinforcement (P, = 0.6Pr)
Analysis ACI CEBFIP Branson .°%  ACI CED-FIP Branson O
method » theory theory
E)‘;‘éce"t’ated 037427 0.38685 0.41171 0.34525 0.35216 0.36491 0.39104 0.32234
Evenly
ven 0.46784 0.48357 0.51464 0.51312 0.44020 0.45613 0.48880 0.48883
distributed
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deflection equations cannot be used. However,
as shown in Figure 10, our theory allows a curva-
ture distribution for all deformation conditions
of the beam, from the elastic domain to rupture,
to be obtained. Thus, equation (58) can be used
to obtain the deflection all the way from the
elastic state to the ultimate state.

9. CONCLUSION

Appling the relationship that stress in con-
crete is expressed by the Ist and the 3rd poly-
nomials of the strain, ie., duffing type stress
strain relation, this study obtained a relation
between curvature and the bending moment at
any section of a reinforced concrete beam ranging
from elastic to non-elastic states. The curvatures
lead to the corresponding deflection is calculated
using equation (58), which is derived by finite
integration transforms shown in paragraph 7.
The deflection corresponding to any stress state
of the simple R.C. beam can thus by calculated.
The important findings of this study are listed as
follows:

1. Figure 4 shows that Duffing stress-strain
relation well agrees to the results so far given
by Fujita and Saka.

2. On the reinforced concrete beam under
bending force, the variations of reinforce-
ment ratio with neutral axis ratio, of rein-
forcement ratio with bending moment and
of curvature with bending moment which
are computed by he presenting theory are
found to be in good agreement to those
derived from the conventional analyses.

3. Table 1 confirms that the deflection equa-
tion based on the finite integration trans-
forms is sufficiently correct. That is, the
sufficient deflection can be obtained when
the relation between bending moment and
curvature at any section is revealed.

4. Equilibrium of force at any section of the
reinforced concrete beam, taking Duffing
non-linearty into account, leads to the curva-

10.

. Kondo and Saka:

. JCL

ture of the section. Thus obtaind curvatures
yield the deflections by means of the finite
integration transforms as shown in Figure
10, 11, and Table 2. It can give the deflec-
tion in the ultimate state. Incidentially, the
division number § in equation (58) becomes
larger, so does the accruacy higher.

REFERENCES

“Concrete Handbook”
Asakura Shoten, P. 259261, 1963. 11. 15.
Yoshio Fujita: “ULTIMATE STRENGTH
DESIGN ON REINFORCED AND PRE-
STRESSED CONCRETE BEAMS UNDER
PURE BENDING” Concrete Library Vol.
16, 1967. 5.

. Ikeda, Koyanagi, and Kakuda: “Reinforced

Concrete Engineering” Shin Taikei Doboku
Kogaku 32, Giho-do. PP. 52-57, 1987, 4.
ACI Standard 318-77: Building Code Re-
quirements for Reinforced Concrete, Ameri-
can Concrete Institute, 9.5, 1977.

“Concrete Standard Specifications”
Japan Institute of Civil Engineering, PP. 92-
93, 1991.

. Branson D.E.: Deflection of Reinforce Con-

crete Flexural Members. Rep. ACI Commit-
tee 435 Jour. of ACI. Vol. 63. No. 6. PP.
638-674, 1966.

. CEB-FIP: “International Guide to Concrete

Structure Design and Construction” Kashima
Shuppan, PP. 113-116, 1970.

Junzou OKAMOTO: “Vibration mechani-
cal” Oumusya, PP. 138-139, 1976.

SUMIO G. NOMACHI: On Finite Fourier
Sine Series with Respect to Finite Difference,
The Memoirs of the Muroran Institute of
Technology Vol. 5. PP. 188-189, 1965.
GEORGE BOOLE, D.C.L: “A Treatise on
the Calculus of Finite Difference,” Dover
Publications, INC. New York. PP. 62-83,
1976.

WHEBE : RESIE 9B 2H
BEEY : RESIE 9817R
E2AY: RESIFENAIH

— 67 —



