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ABSTRACT

The multiple, interactive contaminent dispersal theory is presented based upon a
lump grouping formulation through the microscopic approach governed by the
principle of kinetics and 1-D convection-diffusion processes. A hnear first-order
kinetics lump is introduced to model the interactive contaminant mass transport
phenomena. A 1-D convection-diffusion lump is provided to model the imperfectly
mixed zones. The character and solution of resulting system equations is discussed,
and steady-state as well as dynamic numnterical solution metheds are alse outlined.
Appropriated agromicroclimate system models were selected to provide a compu-
tational impelentation and application of this microscopic approach.

Keywords: agromicroclimates, kinetics lump, 1-D convection-diffusion lump, micro-
; scopic approach.

INTRODUCTION climate of a farm structure has already been

developed previously by author (Liao, 1992a).

The macroscopic approach regarded to the  There exists two disadvantages when the macro-
contaminant dispersal analysis in an agromicro-  scopic approach is being adopted: (1) it fails to



account for the chemical dynamics of the agro-
microclimates, and (2) it fails to describe the
behavior of the imperfect zone lump. This paper
attempted to study some of technical concerns by
developing alternative modeling options based on
lump grouping methodology from the viewpoint
of microscopics that are designed to simulate
both the multiple, interactive contaminant dis-
persal and imperfect mixed zone problems.

The theory and method presented are based
upon a generalization of a farm structure idealiza-
tion employed earlier (Liao, 1992a). Air flow
system in agromicroclimates are idealized as
groupings of mass transport lumps, rather than
simply flow lumps are used previously, con-
nected to discrete system nodes corresponding to
well-mixed air zones within the agromicroclimate
and its air duct work system. Equations governing
contaminant dispersal in the whole air flow sys-
tem due to air flow and reaction or sorption mass
transport phenomena are formulated by grouping
lump equations, in such a manner that the funda-
mental requirement of conservation of mass is
satisfied in each zone.

In specific terms, the purposes of this paper
are:

(1) To model the dispersal of interactive
contaminant involving contaminant mass trans-
port phenomena governed by basic principle of
kinetics and introduces a linear first-order kinetics
lump to achieve this end.

(2) To model hthe details of contaminant
dispersal driven by covection-diffusion processes
in one-dimensional flow situation (e.g., air
delivering duct in mushroom growing houses)
and introduces a convection-diffusion flow lump
to achieve this end.

KINETICS LUMPS

Multiple-noninteractive Contaminant Dispersal
Air quality analysis in a farm structure
environment will involve of several contaminants
and their dispersal (Anderson et al., 1988; Liao
and Feddes, 1991; Leonard et al., 1984; Groves
and Ellwood, 1991). Some of these contami-
nants may: (1) be absorbed or adsorbed by build-

ing materials, or other contaminant particles,
(2) settle from suspension or precipitate from
gaseous solution, or (3) decompose chemically,
or react with other contaminants to produce con-
taminants. Contaminant dispersal processes then
can be characterized by the Kkinetics of: (1)
sorption processes, (2) settiling or precipitation
processes, or (3) chemical reaction processes.

The dispersal of each contaminant of a given
set of noninteractive contaminants will be
governed by the single-species contaminant dis-
persal equation, thus the dispersal of the non-
interactive contaminant set may be represented
by a set of the linear dynamic equations (Liao,
1992a):

[F){C®) + [M] {dC%dr} = {5}

[FP1{CP} + [M] {aCPiar} = {s°} (1)

where:
o, B, ... = species indices,

{C}= species concentration vector, kg (kg
of air)'1 ,
[F] = system mass flow matrix, kg m3 ,
[M]= system volumetric mass matrix, kg,
{S} = species generation rate vector, -kg
hrl.
The uncoupled set of equations given by equa-

tion (1) may be expressed as an expanded system
equation:

[F1{C} + [M] {dC/dr} = {5} @)

The system flow transport matrix ([F]) may
be first grouped by species (designed as “0””) and
then by lump (designed as “e”) as:

[Fl= G [ Gﬂ[fe’p]] 3

e=a,b | p=a,

where: G(-) is the grouping operator (Liao,
1992a).
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The inner species grouping sum in equation (3)
can be seen as a lump equation formulation for a
noninteractive, multi-species flow lump ie., the
noninteractive, multi-species flow lump transport
matrix. This multi-species flow lump could be
grouped in the usual manner (Liao, 1992a) to
form the system equations.

Reaction Kinetics

A general form of a chemical reaction in-
volving reactants, &, §, ..., that react to form pro-
ducts, p, 0, ..., may be represented as (Moore and
Pearson, 1981):

a+B+.=>pto +.. @)

Given the rate of change of a selected com-
ponent’s concentration, say ¢, is defined as:

R® =dC%/dt (5)

The rate of change of the other components
concentration may be related to that of the
selected components as:

R%*=mP/m*R8= .= —(mYm*)R? (6)

where m*, m®, and m? is the relative masses of
reactants and products. Thus the rate of a given
chemical reaction may be described in terms of
the rate of change of concentration of any one of
the reactants and products.

Generally, the rate of a given chemical reac-
tion may depend upon a variety of factors in-
cluding reactant and catalyst concentrations,
temperature (T) and pressure (P), and detailed
mechanism of the chemical reaction, therefore,
rate expression take the general functional form
as,

R®=R%*(¢*,C%..,CP.CO .. T,P,..) ()

In some instance the rate of reaction may remain
more or less constant: R* = R, or depend only
on temperature and pressure: R* = R3(T, P).
Examples include the catalytic decomposition of
some gases, such as NH; in pig houses (Liao,

1992b), the controlled burning of fossil fuel in
agricultural machinery plants (Hinz, 1989), and
other relatively slow reaction driven by reactant
and product concentrations that remain, more or
less, constant over the time of interest.

Rate expression for certain general classes of
reactions, inlcuding single-reactant, consecutive,
reversible, and paralledl first-order reaction
(Moore and Pearson, 1981), often take the form
of linear combination of contaminant concentra-
tion:

{R}=—[k]{C} +{R,} (®

where [k]-may be referred to as the rate coeffi-
cient matrix, and can be expressed:

I"Kaot _K% ... _go0n
_Kﬁa Kﬁﬁ vee _Kﬁo
K] = ®)
___KO'Ot _Kaﬂ ces KUU

It is possible to linearlize any given rate ex-
pression about some state of concentration, say
{Cg‘, Cg,...} , by employing a Taylor’s expansion
about that state to obtain an approximate rate
expression expressed as the sum of a series of
first-order rate expressions as:

R*(C*CP,..) = R*(C,CB,.) + OR*(C2,CE,..)/
ACH(C* — C¥) + OR*(C2,CE,..)/
ACH(CE - Chy+ ... (10)

Then, equations (10) together with equation (6)
can be used to form a linearlized system of first-
order rate expression: equation (8).

Linear systems of first-order reaction ex-
pression are defined by the characteristics of
their reaction rate cogfficient matrix ([K]).

Kinetics Lump Equations
The development of a general kinetics lump
equation is straightforward. Limiting the con-
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sideration to mass transport phenomena occur-
ring within a specific zone “i”, containing a set
of contaminant species, &, B, v, ..., the relevant
lump variables can be first expressed as:

{c°1 = {ceo,cf,cem, ) T (11)

and

{we]={wiewebwer, 3T (12)
where: {we} is lump species mass flow rate. (kg
hrhy.

Assuming that the mass transport phenom-
ena to be modelled is governed by the kinetics
discussed above, a general kinetics lump equation
follows directly from the definition of rate of
reaction (equation (5)) and the general form of
rate expressions (equation (8)) as:

wé =~IM/1{R;({C] }.T,P)}  (13a)
where:

[Mf] = diag [M;,M,,.... M;] (13b)

[RE({CE} . T.P)]

’ T
RiB(Cie,a,Cf ﬁ,...,T,P),...}

{R;x(cie")"Cie'B,---yTaP)’

(13¢)

For reaction kinetics described by systems
of first-order equations (equation (8)).

R{({C7Y.T.P)} =—[k51{C7} + {RS; }
(14)

The kinetics lump equation (13) becomes:

{w} = (MR L{CT} - (M1 RS,
(15)

It will be convenient to introduce a new variable
for the linear first-order lump kinetics transport
matrix ([K[]) as:

(K71 =[M]] [K]] (16)

and a corresponding variable for the system
kinetics transport matrix, [K], that is grouped
from the lump kinetics transport matrices in the
usual manner, as:

[K] = G (k€] an
kinetics lump
Therefore, the system ttansport matrix
([W]) can be expressed by the sum of the system
flow matrix ([F]) and the system Kinetics
transport matrix ([K]) as:

(Wl = [F] +[K]

G 1+ G [k]
flow lumps kinetics lumps
(18)

CONVECTION-DIFFUSION LUMPS

In some situations the analyst may be inter-
ested in the details of dispersal in some flow
passage or may feel the noninstantaneous nature
of the flow should not be ignored. If flow in
these flow passage may be assumed to be practi-
cally one-dimensional (e.g., longer portions of air
duct works in mushroom houses and green-
houses) then the details of the convection and
diffusion mass transport processes that driven the
dispersal may be accounted for using groupings
of two-node convection-diffusion lumps. ‘

The convection-diffusion equation is often
expresses in dimensionless form as (Nauman and
Buffham, 1983):

1/P,8*C/0X% +y=8C/dt+ 3C/X (192)
in which:

P, =w®L/(pAD®) = AL/D® (19b)

where:
P, = dimensionless Peclet number,
X = dimensionless length = x/L,
t = dimensionless time = ¢/F,

= dimensionless generation rate = gL/w®,



~|
n

nominal transit time = L/#, hr,
bulk fluid velocity = w€/(p4), m hr'l,
p = fluid density, kg m'3,

1|
[}

D= dispersal coefficient for one species,
m? hr'l,
L = length of tee flow passage, m,

g = species generation rate per unit length
of passage, kg hr! ml.

The Peclet number characterizes the convection-
diffusion process in a flow passage not involving
a kinetic rate expression. It provides a meaure of
the importance of convection mass transport
relative to diffusion mass transport.

The dispersal coefficient is reasonably cor-
related to the characteristic Reynolds number
(R,) of the flow and is practically independent
of species molecular diffusivity as indicated by
the Taylor expression (Wen and Fan, 1975):

D*~Df~ .. =D = 2aR(3.0x10"/R2! +
0.1255.
1.35/R%125); R, > 2000 (20)

where: R is the flow passage radius (m); R, =
2puR/u; the Reynolds number; u is the flow
fluid viscosity (kg hrl ml).

CONVECTION-DIFFUSION
EQUATIONS

Finite element solution of convection-diffu-
sion equation of the form of equation (19) have
received considerable attention in recent years.
Following the one-dimensional example dis-
cussed by Huebner and Thornton (1982), lump
equation (19) using linear shape functions
(i.e., assuming species concentration vary in a
piecewise linear manner along the flow passage)
and applying either the convectional Galerkin
method or the upwind Retrov-Galerkin method
in the formulation of these lump equations. The
resulting lump equation are (Huebner and
Thornton, 1982; p. 448):

{wey = [IFf] + [F11{C°} + [m®]

{acejary —{g°) 21a)

where:
{we} = {Wie’wf T

(1=t 7

-1 1 1 —1
[££1 =we/2 [ } + w2 }
-1 1 -11

(21b)

(the convection component of the lump
flow transport matrix),

¢ = so-called upwind parameter, 0<¢<Il,

1 -1
[£2] = pAD/L @210)

-1 1

(the diffusion component of lump flow
transport matrix),

L®= the length of the lump,

2 1 -1 -1
[m®] = pAL®/6 + ¢pAL?/4
1 2 11

(21d)

(the lump volume mass matrix), s

1 -1
{g°} =gL®/2 [ }+ ¢gLe/2{ ] (21e)

1 1

(the internal generation rate vector),

for total fluid mass flow rate (w®) through
the flow passage from node i to node j.

The convection-diffusion equation defined
by equation (21) may be grouped along with the
simple flow lump equation and kinetics lump
equations to form ‘the system equations. The
convection-diffusion lump introduces, however,



nondiagonal contributions to the system mass
matrix ([M]) that adds some complexity to
the grouping and solution algorithms used
in the computational implementation of the
contaminant dispersal theory. To avoid this
complexity one may replace the so-called con-
sistent lump volume mass matrix (equation
(21d)) with a diagonal grouped mass approx-
imation to it, which is given by Huebner and
Thornton, 1982; p. 416):

1 0

[m€] = pALE[2 (tlumped) 22)

Steady-State Analysis. When considering steady-
state flow without internal generation, Huebner
and Thornton (1982) show that instability may
be avoided if an upwind parameter is selected
satisfying the condition;

$=>1-2/P%; P°>2

0=0; Pe"’ <2 (23)
where P is the lump Peclet number (P =w°L?/
(pAD) = ulLf/D).

For this problem the convection-diffusion
equation simplifies to:

1/P d*CldX? =dCldX (242)
which may be solved for the boundary condi-
tions:

Cx=0)=C,;

Cx=L)=0 (24b)

to obtain an exact solution:
Cx/L)IC, = (exp (P, [L(x/L)) — exp(P,/L))]

(1 —exp(P,/L)); 0<x/L<1 (25)
that will be compared to approximate solution
obtained using convection-diffusion lumps. The
results clearly show that the numerical instability
that may result when upwinding is not used for

high lump Peclet numbers (Huebner and Thorn-
ton, 1982).

Dynamic Analysis: In dynamic analysis, accuracy
is affected not only by lump size, and the degree
of upwinding chosen, but also by the integration
step selected to complete the dynamic solution.
For different Peclet numbers, three alternatives
can be obtained.

(1) For P_=0 the duct becomes a well-mixed
system, the initial condition throughout the duct
becomes (1/(pA4L)), and the outlet concentration
decays exponentially:

C(L,t)/(1/pAL)) = exp(—t/f); P, =0 (26)

(2) For relatively large Peclet numbers the
outlet concentration is well approximated by the
following expression reported by Nauman and
Buffham (1983):

C(L.OI(/(AL)) =(B,[(4n(1/7)}) )
exp(—Pe(l - t/t_)z/(4t/f)); P,>16 (27)

(3) For vary large Peclet numbers the outlet
conventration approaches a Gaussian distribution
(Wen and Fan, 1975):

C(L,DI(1/pAL) = (P, J4m)'?

exp(P,(1 - t/f)?[4); P,>> 16 (28)
In all cases the upwind parameter was chosen to
satisfy the lower bound of the stability require-
ment of equation (27).

Analytical Properties: The numerical properties
of the convection-diffusion flow lump have been
seen to be dependent upon the lump Peclet
number. To investigate this dependency in
greater detail, equations (25b) and (25¢) may be
rewritten in terms of the lump Peclet number, as:

(1 =71+ 15711

-1 1
=w¢/2
-1 1
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+ pDA/L® »
-1
= ~1 1 1 -1
= w2 +(¢+2/P)
-1 1 -1 1

(29)

The stability requirement of equation (23) may
be rewritten as:

B €
$+2/P°>1; P°>2

$=0; P°<2 (30)

Assume that the flow transport matrix will

be an M-matrix: a real square matrix with posi-
tive diagonal elements and nonpositive off-
diagonal elements such that [[f®] + £[[]] is
strictly diagonally dominant for all £ <0. It was
shown earlier (Liao, 1992a) that lump flow
transport matrices satisfying this condition
(coupled with mass matrices that are positive
diagonal matrices) lead to system transport ma-
trices are nonsingular.
Tanks-in-Series Idealizations: In the chemical
engineering literature the so-called tanks-in-
series idealization is frequently employed to
model the behavior of one-dimensional convec-
tion-diffusion transport processes or other pro-
cesses whose inlet-outlet transformation charac-
teristics appear to match those described by one-
dimensional convection-diffusion equation (Nau-
man and Buffham, 1983). In the tanks-in-series
idealization a portion of the flow () assumed to
recirculate between adjacent tanks is used to
model the nature of turbulent and molecular
diffusion (Nauman and Buffham, 1983).

The subgrouping of this tanks-in-series
idealization consisting of half of two adjacent
unit tanks and the connecting simple flow lumps
(Figure 1), which it shall be referred to as a
tanks-in-series lump, may be compared directly
to the convection-diffusion flow lump.

Lump equations for the tanks-in-series flow
lump may be grouped directly from the simple

flow equations:
{wé} = [ff]{Ce} + [m®] {dC%dt} (31a)

where:

1 0 1 -1
+ 60w®

-1 0 -1 1

] =we (31b)

(tanks-in-series flow lump transport matrix).
Comparing these equation (31) with the convec-
tion-diffusion lump equation (equation (21)), it
can be seen that they become equivalent when,

6 = pAD/(w°L®) = 1/P¢ (32)

and a full upwinding (¢= 1.0) is used.

In comparing the convection-diffusion lump
and the tanks-in-series idealization, modeling
high Peclet number flows will demand a fine sub-
division of lumps and modeling low Peclet num-
ber flows will not (Nauman and Buffham, 1983).
By choosing different Peclet numbers, the con-
vection-diffusion lump may be used to model a
zone that is not perfectly mixed. Therefore, the
convection-diffusion lump developed to model
flow transport situations become apparent that
this lump provides one means to model imper-
fectly mixed zones.

Therefore, two aspects of the convection-
diffusion lump are especially important: (1) the
convection-diffusion lump is based upon a micro-
scopic description of dispersal (i.e., it is based
upon partial differential mass balance relations)
and its use provides a first example of combining
macroscopic modeling methods (ie., the well-
mixed zone and simple flow lumps (Liao,
1992a)) with microscopic methods in a single
analytical procedure; and (2) from another per-.
spective an one-dimensional flow regime may be
thought to represent an imperfectly mixed zone,
thus, the convection-diffusion flow lump may be
considered to be an imperfectly mixed zone
lump.
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IMPLEMENTATION AND
APPLICATION

An Agricultural Machinery Plant Model
Detailed field investigation of an agricultural
machinery plant measuring CO, NO, NO, emis-

throughout the plant under a variety of different
weather conditions was already reported by Hinz
(1989). Figure 1 illustrates an idealized lump
flow model of the plant. Figure 2 shows the
range of the principal pollutant sources. Table 1
lists the system parameters used in this model

sion characteristics of the burning of fuel within simulation.
the plant and the dispersal of these contaminants
4@
vl 3@ : v
AL 0.21 A —— ——0.21 M
i® ? i 1750 | 7.5 AN
‘L lw
V5 3 2@ w
0.21 A —— —— 0.21 AH
1 0.400 | 0.4 AH :
(1+0)w® ln lw
. W 1@ V10
W 0.21 & —— +1— 0.21 A
— i ? 1/2pAL 1/2pAL @ j
T swass | | ]
ow®

Fig. 2. An agricultural machinery plant idealiza-
Fig. 1. The equivalence of the lump convection- tion: a 4-node lump model.

flow and a tank-in series lump.

Table 1. System parameters used in model simulation for an agricultural machinery plant (Hinz, 1989)

Air volume: .V, =V,=V3=126.5m3,
V, =126.5 x 10° m3.

Air density = 1.2 Kgm™3 (@ 1 atm 25°C)

Local air flow rate:
W,1=W, = 0.4x126.5x1.2 = 60.72 Kg hr!
W3 =W, =7.5x12.65x1.2=1138.5 Kg hr!
Ws =..=W;0 =0.21x126.5x1.2=31.88 Kg hr'}

Steady-state source emission rate: S(s,s)
NO, = 1.80 mg min™!
CO =14.7 mg min™!
NO = 2.55 mg min"!

The instantaneous emission rate, S(t), is
plotted relative to the steady-state value, S(s,s).
The NO, emission characteristics were more or
less constant and are not illustrated. NO, is a

reactive contaminant and was modeled as using
the measured reactivity of k = 2.4 hr' T (Borrazzo
et al, 1987): d[NO,}/dt = — kNO2(NO,],
where: [k] = [kN02] =24hrt.
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Figures 4 — 6 show the short-time responses
of dispersal of NO,, CO, and NO in a 4-node
lump idealization for a agricultural machinery
plant. In this particular case, it was assumed that
the measured whole-building fresh air infiltrated
rate of 0.21 air exchanges per hour (ACH) was
distributed equally in all these zone, the first-to-
second lump local airflow rate was assumed to
be 0.4 ACH, the second-to-third lump local air-
flow rate was assumed to be 7.5 ACH, and all air-
flow rates were assumed to be constant.

Convection-Diffusion Lump Model

Case 1: Steady-state condition.

Consider the problem: The dispersal of a
contaminant along a straight flow passage under
steady-state flow conditions, without generation,
and with inlet contaminant concentration main-
tained at C | and outlet concentration maintained
at zero (Figure 7). For this problem the convec-
tion-diffusion equation used is equation (25),
that will be compared to approximate solutions
obtained using convection-diffusion lump model.

For the approximate solution, an idealiza-
tion consisting of a series of ten convection-
diffusion flow lump is considered (Figure 7).
The solution generated for two Peclet numbers,
P, =0.2 and P, = 20; and two upwinding factors,
¢ = 0.0 and ¢=1.0. The exact with the approxi-
mate solutions are compared in Figure 8.

The results show that the numberical in-
stability may result when upwinding is not used
for high Peclet number. For convection-domi-
nated flow, which should be expected to be
typical in building HVAC ductwork under
operating conditions (ASHRAE, 1985), and
therefore that a fine subdivision o a given duct or
employ upwinding to maintain numerical stabil-
ity may be adopted.

Case 2: Dynamic condition.

Consider the problem: Fluid flows through
a duct of length L and radius R at a mass flow
rate W®, a contaminant is injected into the inlet
stream at a rate S(t) for a short time interval in-
troducing a pulse of contaminant of mass 1 into
the inlet stream; the pulse is convected and dis-
persed as it moves along the duct (Figure 9). The

objective is to determine the concentration time
history of the contaminant as it emerges from
the outlet of the duct.

The exact solution to this problem is avail-
able for an impulse (i.e., a pulse defined by the
dirac delta function), for closed inlet and outlet
conditions, and already derived in equations (30)
— (32) for different Peclet number.

Approximate solutions to this problem were
computed using a 12-node with 10-lump subdivi-
sion (Figure 9). The closed boundary condi-
tion was modeled using the simple flow, lump as
this lump models (completed-mixed) plug flow
conditions as required. The impulse was approx-
imated by a pulse of finite but small duration. In
all runs the upwinding parameter was chosen to
satisfy the lower bound of the stability of equa-
tion (23). The results are compared and shown
in Figure 10.

In is seen that the approximate solution for
the low Peclet number (P, = 1) approaches the
exact well-mixed solution. A comparison of the
results of the 10-lump model approximation for
P_ = 10 indicates that a cbnvergent solution was
obtained, yet when this result is compared to the
exact results reported by Wen and Fan (equation
(45)) (1975) the amplitude appears to be under-
estimated by about 10% (Figure 10). This same
comparison for P, = 20 indicates that a con-
vergent solution was almost but not quite
achieved.

An additional subdivision would presumably
reveal convergence, and the error in amplitude
estimation was approximately 20% (Figure 10).
It is interesting to note that the lump Peclet
number for these two convergence solutions:
10-lump solution at P, = 10 and the 20-lump
solution at P, = 20, are both equal to 1.0;a con-
dition that demands no upwinding (¢ = 0) to
maintain numerical stability.

The study for P, = 20 corresponds to study-
ing the transport of a pulse through a circular
duct for 1 m radius having a length of 10 m with
a bulk flow velocity 2 m s™'. For these condi-
tions, the dispersal coefficient may be expected
to be about 1 m? s! (ASHRAE, 1985). The
results (Figure 10) were computed using a pulse
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Figure 8. Comparison of exact and lump model solutions for a steady-state convection-diffusion model
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duration of 0.005 sec (i.e., the pulse duration,
say 0.001 times the nominal transit time: 7 = L/a
= 10m/2ms ! = Ssec.). In order to gain the short-
time pulse accurately and to achieve a convergent
solution, the dynamic solution was computed
using a time step of 0.001 sec.

In practical situations the inaccuracies
revealed in these studies are likely to be con-
sidered very small, thus, the convection-diffusion
flow lump should provide a practically useful
analytical tool. This studies also suggest that
when employing convection-diffusion lumps in
an idealization of a agromicroclimate airflow sys-
tem, it is very likely that extremely small time
step will be required to obtain a convergence
solution.

SUMMARY AND CONCLUSIONS

1. In the first part of this paper, a clearer
definition of contaminant dispersal analysis in
agromicroclimates has already been given based
upon a lump grouping formulation of the well-
mixed zone simplification of the macroscopic
equations of motion. The noninteractive con-
taminant dispersal theory presented in the first
part of this project has been extended in this part
through: (1) the introduction of lump equations
that may be used to model mass transport
phenomena governed by first-order kinetics, and
(2) through the introduction of lump equations
that may be used to model the details of
mass transport driven by convection and diffu-
sion processes in one-dimensional flow paths.

2. Although it is well recognized that kinetics
plays an important role in chemical sorption, and
settling processes that affect contaminant dis-
persal processes in agromicroclimates, the detailed
knowledge needed to apply kinetics analysis
techniques presented here is often not available
and actual field or experimental measured data
needed to validate any modeling effort is scarce.
Thus, the application of the kinetics techniques
presented here has become an area emphasis in
the recommendation for future research.

3. It was recognized that the 1-D convenc-
tion-diffusion lump can provide one means to

— 4

model the imperfectly mixed zones. Thus, this
mass transport lump could be considered to be a
imperfectly-mixed zone lump. In this new
formulation, the well-mixed model becomes one
special case and a framework is provided for the
development of other imperfectly mixed zone
lumps.
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