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Contaminant Dispersal Analysis in Agromicroclimates

Via Lump Grouping (I) Macroscopic Approach
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ABSTRACT

A contaminant dispersal analysis model is presented based upon the concept of
the idealization of an agromicrocilimate airflow system as a grouping of flow lumps
connected to discrete system nodes corresponding to well-mixed air zones within the
agricultural structure and its air delivering system. Equation governing the airflow
processes in the agromicroclimate system and equation governing the contaminant
dispersal due to this flow, accounting for contaminant generation or removal, are
formulated by grouping lump equation so that the fundamental requirement of
conservation of mass is satisfied in each zone. The characteristic and solution of the
resulting system equation is discussed and steady and dynamic solution methods
outlined. Examples of application of this model to practical problems of contami-
nant dispersal analysis are also presented.

Keywords: contaminant dispersal analysis, agromicroclimate systems, lump grouping,’
discrete analysis techniques, macroscopic approach.
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INTRODUCTION

Airborne contaminants introduced into or
generated from an agromicroclimate system dis-
perse throughout the system in a complex man-
ner that depend on the nature of air movment
into (supply), out of (exhaust), and within the
system, the influence of heating, ventilating, and
air conditioning (HVAC) systems on air move-
ment, the possibility of removal by filtration, or
contribution by generation; of contaminants by
HVAC system, and the possibility of chemical
reaction or physico-chemical reaction (e.g.,
adsorption or absorption) of contaminants with
each other or the materials of the systems con-
struction.

The objective of this paper is to develop a
model of this dispersal process for an agromicro-
climate system that comprehensively accounts
for all of these processes that affect the actual
contaminant dispersal phenomena. It shall
attempt to develop this modeling capability
within a more general context so that techniques
developed here may be extended to more com-
plex problems of contaminant dispersal analysis.

The airflow system in an agromicroclimate
system may be considered to be a three-dimen-
sional field within which the state of infinitesimal
air zones (lumps) are seeked to completely
describe. The state of air lump will be defined
by its temperature, pressure, velocity, and con-
taminant concentration (for each species of
interest) —— the state variables of the contami-
nant dispersal modeling problem.

The work is then to determine the spacial
and temporal variation of the species concen-
tration within a system due to thermal, flow, and
concentration excitation driven by environ-
mental conditions and the air delivering system
and its control given system characteristics and
their control. That is, the purpose is to deter-
mine,

Cc*(X, y,z 1),

CP e,y 2 t),

where:

C = species mass concentration, kg/kg air,
a, 8 = contaminant species types indices,
X, ¥, z = spacial coordinates,
t = time, hr,
and shall refer to the process of determining the
spacial and temporal variation of these species
concentrations as contaminant dispersal analysis.
Contaminant dispersal analysis, for a single
nonreactive species a, depends on the air velocity
and its variation with time;

C*(x, 5,2 t)=C*(V(x, y, z, t))and B.C.
(1

where B.C. = boundary conditions. But the air
velocity field depends on the pressure field which
is affected by the temperature field through
buoyancy and, completing the circle, the tem-
perature field is dependent on the velocity field:

v(x, y, z,t)=v(P(x,y, 2 t)) & B.C 2)
P(x, 3,2, t)=P(T(x, 5,2, 1)) &B.C  (3)
T(x, 3,2, t)=T((x, 3,2 t)&BC. (4

Thus, contaminant dispersal analysis, for a
single nonreactive species, is complicated by a
coupled nonlinear flow-thermal analysis problem.
Therefore, a comprehensive dispersal mode! will
eventually have to address the related flow and
thermal problem. For cases of reactive contami-
nants, contaminant dispersal analysis itself will
become a coupled (and, generally, nonlinear)
analysis problem as individual species’ concen-
tration depends on other species’ concentration
in addition to the air velocity field; i.e.,

C(x,y,2,1)=C*@C%C, ..) (52)
CPe,yz,)=CP @ CoC,...) (5b)

In this paper the focus will be on single, non-
reactive species dispersal analysis and the as-
sociated problem of flow analysis, for a com-
pletely defined thermal field and its variation.
The approach taken has been formulated to be
compatiable with lumped-parameter modeling
techniques developed earlier by author (Liao and
Feddes, 1990; Liao et al., 1991a and 1991b).



Presently, the second paper are addressing the
reactive, multiple species dispersal analysis pro-
blem.

MODELING APPROACHES

The general field problem posed above shall
be attempted to solve by determining the state of
air at discrete points in the argomicroclimate air-
flow system. It will be shown that this spacial
discretization allows the formulation of systems
of ordinary differential equation that describe
the temporal variation of the state fields. Two
basic approaches may be considered, one based
upon the microscopic equations of motion (ie.,
continuity, motion, and energy equations of
fields) and the other based upon a well-mixed
airspace simplication of macroscopic mass,
momentum, and energy balances for flow sys-
tems.

In the microscopic modeling approach one
of several techniques of the generalized finite
element method, which includes the finite differ-
‘ence method (Zienkievicz and Morgan, 1983),
could be used to transform the systems of
governing partial differential equations into sys-
tems of ordinary differential equations that then
can be solved using a variety of numerical
method. The macroscopic modeling approach
leads directly to similar systems of ordinary
differential equations.

In both approaches the agromicroclimate air-
flow system is modeled as a group of discrete
flow lumps connected at discrete system nodes.
Systems of ordinary differential equations
governing the behavior of lumps are then formed
and grouped to generate systems of ordinary
differential equations that describe the behavior
of the system as a whole (i.e., in terms of the
spacial and temporal variation of the discrete
state variables). These systems of equations may
then be solved — given system excitation, initial
conditions, and boundary conditions — to com-
plete the analysis.

From a practical point of view, microscopic
modeling will involve on the order of 1000 node
nodes per airspace, while the macroscopic model
will involve on the order of only 10 nodes per
airspace to idealize acceptably accurate results.
With six state variables for a single species —
temperature, pressure, three velocity components

and species concentration — the microscopic
modeling approach can lead to extremely large
systems of equation that therefore limit its use to
research inquiry. The macroscopic approach,
resulting in systems of equation that are on the
order of two magnitudes smaller than the micro-
scopic approach, is a reasonable methodology for
partial approach, althrough it can not provide the
detail of the microscopic approach. Within this
paper, it shall limit consideration to the macro-
scopic approach.

The agromicroclimate airflow system shall
be modelled as a group of flow lumps connected
to discrete system nodes corresponding to well-
mixed airspace. Limiting the attention to the
contaminant dispersal and associated with each
system node, the discrete variables or degrees of
freedom (DOFs) (Huebner and Thornton, 1982)
of pressure, air mass generation (typical air-
space), species concentration, species mass
generation, and temperature;

{P}y={P,, Pp. ...}: Pressure DOFs (6)

{w)={w,, w,, ..}: air mass generation
DOFs (7
{€C}={C,, C,, ...}: species concen. DOFs

DOFs (8)

{S)Y={(S,:. S, ...}:species generation
DOFs (9)

{Ty=AT\., T, ...}: Temperature DOFs
(10)

as well as the key system characteristic of nodal
volumetric mass, V, V,,. ... The pressure, con-
centration, and temperature DOFs will approxi-
mate the corresponding values of the state field
variables at the spacial locations of the system
nodes. With each lump “e” in the system group,
the lump connectivity (the system nodes that the
lump connects) can be noted and identified a
lump air mass flow rate as, w€. The lump mass
rate will be related to the nodal state variables
through specific properties associated with each
particular lump to form lump equations.



CONTAMINAANT DISPERSAL
ANALYSIS

Lump Equations

Two nodes and a total mass flow rate, we,
will be associated with each flow lump, where
flow from node i to j is defined to be positive. A
lump species concentration, Ci, and a lump
species mass flow rate, w;, with each lump node,
k=i, j. The lump species mass flow rate is
defined so that flow from each node into the
flow lump is positive.

It follows from fundamental consideration
that these lump variables are related to the total
mass flow rate of flow lump as:

1 0
€y — I e,

0 -1
€y = |wtl

{w®)=[ff] (C®}

{C®);forw®>0

(11a)

{C%}; forw® <0
(11b)

or
(11¢)

where:

(W= (w5, wje)T; lump species mass
flow rate vector, kg/hr (air ex-
change/hr),

{C°y=«C", ¢ »T; lump species concen-
tration vector, kg/kg air,

[f®] = lump total mass flow rate matrix,

kg/hr
1 0]

= jw®| ;forw® >0 (11d)
[0 —1]

= |w®| o . ;forw® <0 (11e)

For the purposes there, lump nodes will be
selected to correspond to species nodes, con-
sequently, the lump nodal species concentration
will have a one-to-one correspondence with the
corresponding system node species concentration.

If the flow lump acts as a filter and removes
a fraction, n, of the contaminant passing through
the filter, then the lump flow rate matrix be-

comes:
— -
1= 1wl |1 % w0 (i
= |w ; for w® >
' (n1) 0]
[0 (n-1)]
= |w®l 0 (@ 1) ; for w® <0 (11g)

The fraction, 7, is commonly known as the
“filter efficiency” and may have values in the
range of 0.0 — 1.0.

System Equations

System equations that relate the system con-
centration DOFs, {C}, to the system generation
DOFs, (S}, may be grouped from the lump
equation by first transforming the lump equation
to the system DOFs and then demanding con-
servation of species mass flow at each system
node.

There exists a one-to-one correspondence
between each lump’s concentration DOFs, { Cc%,
and the system concentration DOFs, {C}, that
may be defined by a simple Boolean transforma-
tion;

{C®) =[B°) {(C} (12)

where [B®] is an mxn Boolean transformation
matrix consisting zeros and ones; m = the num-
ber of lump nodes (here, m=2); n = the number
of system nodes.

For example, alump with nodesi and j
(or 1 and 2) connected to the system nodes 5
and 9, respectively, of a 12-node system would
have ones in the 1st row, 5th column and the
2nd row, 9th column and all other lumps of the
2x12 Boolean transformation matrix would set
equal to zero.

In a similar manner, a system-sized vector
can be defined to represent the net species mass
flow rate from the system node into a flow lump
“e”, {W°), and relate to the corresponding lump
species mass flow rate using the same transforma-
tion matrix as;

(wey = [B°] T(w®) (13)

For an arbitrary system node n, with con-
Y
nected lump “a”, “b”, . . ., conservation of



species mass then can be shown as;

{ (sum of lump species mass flow)
+ (rate of change of species mass)

= (generation of species mass)}node n (14)
or

witwb+ . +V.dC dt=S, (15)
or for the system as a whole;

e=aE,b,...,( W+ [V] {dC/dry={S} (16)

where:

[V]= diag (V,, V3, .. .); the system volume-
tric mass matrix, kg,
V, = the volumetric mass of node i, kg.

Substituting relations (11c), (11c), (12), and (13)
into (16) leads to:

[F1{C}+ [V] {dC/dt} ={S} (17a)
where:
F1=,..% . [B°17 (721 [B°]  (17b)

[G] = the system mass flow matrix, kg/kg air,
= G([f¢]); the direct grouping sum of
lump flow matrix.

Equation (17a) defines the contaminant dis-
pérsal behavior of the system as a whole and is
said to be grouped from the lump equation
through the relation given by equation (17b).
The grouping process, as formally represented in
equation (17b) is governed by conservation
principles. Therefore, G(®) in equation (17b)
can be referred to as the grouping operator.

Boundary Conditions

The variation of concentration or generation
rate, but not both, may be specified at system
nodes. Concentration or generation conditions
in the discrete model are equivalent to boundary
conditions in the corresponding continuum
model.

Formally, these DOFs for which concentra-

tion will be specified, { C o },may be distinguished
from those for which generation rate be specified,
{C,}, and partition the system of equations
accordingly;

[F..) 1 [F]] \<c

o do ] __—

[Fl 1 [Egl| (<c)

V) 1 [01] {cacyarr] sy
+ _—— — —_—— -] - = - — — - -—— —

(0] 1 V)| [cacary) [¢s)

- - (18)

using the second equation and simplifying, it
leads to;

[FG1(C, Y+ [V] (dC/ldt}

={(8} — [F,]1{C,} (19b)
or

[F] {C}+ [V] {dCldt} ={ £} (19b)
where:

[F]=[F &) = the generation driven mass
f flow matrix,
(C)= {C,)=the generation driven nodal
R concentration,
{E}={S;} — [F ]{C_} = the system
excitation.

It should be noted that the response of the
system is driven by the system exictation in-
volving both species concentration mass genera-
tion rates and contaminant concentration which
may vary with time.

Equation (19b) written in the standard form
of a set of first ordinary differential equation
similar to the form of equation (17a), directly
defines the contaminant dispersal behavior of the
system. The formation and solution of equation
(19b) will be considered as a central task of con-
taminant dispersal analysis.

The response of the system is defined by the
solution of equation (19b) for the generation
rate specified DOFs, [C_] . The generation rates,
{S. ) required to maintain the specified con-
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centration {_'Cc}, may be determined from the
repsonse of the system to the specified excitation
excitation using the first equation of equation
(18), as:

(SC)= [FL‘C] {CC} t [FCS] (CS}
+[V,, 14dC,/dt) (20)

Qualitative Analysis of System Equation
System flow matrix

The system flow matrix [F], being a direct
grouping sum of nonsymmetric lump matrices,
will also be nonsymmetric. The details of the
grouping process reveal that the diagonal ele-
ments of the flow matrix are always positive and
the off-diagonal elements negative. Furthermore,
if the total mass flow rate into a system node is
equal to the total mass flow rate out of a system
node, then the diagonal elements of the flow ma-
trix will be less than or equal to the row sum or
the column sum of the corresponding off-diagonal
element, F;, is simply equal to the total mass
flow rate out of a node, the row sum of row i
equals to the sum of total mass flow rate into the
node weighted by the filter efficiency factor (n

n
row sum of rowi = EI IFI./.I (21)
]:
J#i
and the column sum equals to the sum of total

mass flow out of the node weighted by the filter
efficiency factor (n — 1);

n
columnsumofcol i= X lez“ (22)
=1
i#f
Therefore, if total mass flow is conserved at each
node, it can be asserted that,

n
F,= j=21 IFi].I
j#i

(23)

and,

1
F.z2 X2 IF,| (24)
=l
1]
where the equality is strict when filter efficiencies
of the lumps connected to node i are zero (i.e.,

all 7=0) and the inequality holds if any of the
connected outflow lumps (for the row sum) or
inflow lumps (for the column sum) have nonzero
filter efficiencies.

If all lumps of a flow system idealization
have nonzero filter efficiencies then the system
flow matrix will be strictly diagonally dominant;
a condition that can prove the flow matrix would
be nonsingular. For the unlikely limiting case
where all lumps have filter efficiencies equal to
1.0, the flow matrix becomes diagonal and,
therefore, all zeros act as independent (i.e., un-
coupled) single zone system.

If all lumps have filter efficiencies equal to
0.0, the equality of equations (23) and (24) hold
for all nodes and the flow matrix is no longer
strictly diagonally dominant, and therefore, may
not be assumed to be nonsingular. It can be
shown that the important submatrix of the flow
matrix is nonsingular be demanding conservation
of total mass flow of all subgrouping of system
nodes and their inter-connecting lumps and using
some theorems relating to the general class of
matrices known as M-matrices.

A M-matrix is a square nonzero real matrix
with all off-diagonal elements nonpositive that
has eigenvalues with nonnegative real parts
(Funderlic and Plemmons, 1981). It may be
shown (Plemmons, 1979) that a real square ma-
trix [A], with positive diagonal elements and
nonpositive off-diagonal elements; (i) is an M-
matrix if and only if it can be shown that [[A] +
£[1]] is a nonsingular M-matrix for all scaler & >
0, and (ii) is a nonsingular M-matrix if [A] is
strictly diagonally dominant,

As can be seen that [[F] + £[I]] is strictly
diagonally dominant, and therefore a nonsingular
M-matrix, for all scalar £ > 0. Thus, it can be
concluded that [F] is an M-matrix, althrough it
will be singular for the limiting case when all
filter efficiencies are zero.

It has also been shown that each principal
submatrix of an irreducible M-matrix is a non-
singular M-matrix (Plemmons, 1979). The flow
matrix would be said to be reducible if it is
possible, using an appropriate numbering of the
system nodes, to group the flow matrix in the
permuted form,



[Fl= f-—------ (25)

where [F;;] and [Fy] are square matrices,
otherwise [F] would be said to irreducible.
Recalling that superdiagonal term, F;; j > i, cor-
responds to flow from node j to node i and a
subdiagonal term, Fji’ j > i, corresponds to flow
from node i to node j, a flow matrix of the form
of equation (25) would correspond to a flow
system idealization having a total mass flow sub-
grouping 2 to subgrouping 1, without a return
flow from 1 to 2, and therefore, conservation of
total mass flow would be violated.

It may be conclluded that; (i) the flow
matrix [F] will be an irreducible M-matrix, and
therefore (ii) the generation driven mass flow ma-
trix, [F], a principal submatrix of the flow ma-
trix will be a nonsingular M-matrix, if they are
found based upon a flow idealization that satisfies
conservation of total mass flow.

Thus the solution of the generation driven
contaminant dispersal equation (equation (19b))
is the central task of contaminant dispersal analy-
sis, and the nonsinguality of the generation
driven flow matrix is a necessary condition to
assume the possibility of solution of these equa-
tions.

System volumetric mass matrix

By definition the system volumetric mass
matrix, [V]. is diagonal and nonsingular. When
some nodal volumetric masses are so smallthat
the analyst prefers to model them with zero
values, the system of contaminant dispersal equa-
tions may be reduced (by eliminating the mass-
less equations) to a form having an all positive.
Thus, a nonsingular volumetric mass matrix is
obtained. The inverse of the positive volumetric
mass matrix then becomes,

(V) =diag[1/Vy,1/Va, ..., 1V,
V,#0 (26)

System equation — steady flow

The generation driven contaminant dispersal
equation (equation (19b)) may be written in the
form as:

[VI'VIF1{CYy+{dC/dt} =[V] ' [E] (27)

where the [F] will be varied with time.

The product matrix [ ]™* [#] contains the
essential dynamic characteristics of the system
being studied. For properly formed idealizations
(being the product of a positive diagonal matrix
and a nonsingular M-matrix (Graybill, 1983)) it
will be a nonsingular M-matrix, and therefore
solution to equation (27) will exist. '

It can be gained some insight into the general
character of solution to equation (27) by con-
sidering the case of steady flow ([F] constant)
without excitation (i.e., the homogeneous case);

[V17 [£] (C)+{dC/dr} =(0} (28)
the solution to equation (28) will be as follows;

{C) ={ D@} exp(—t/1) 29)
where:

T = decay time constant,
{ ®) = vector of unknown magnitudes.

Substituting equation (29) into equation (28)
leads to the standard eigenvalue problem,

(V1 [F] (9 U]1{®Y={0}  (30)

the solution of this standard eigenvlaue problem
and its relation to the first order system of differ-
ential being considered is discussed elsewhere
(Noble and Daniel, 1988; Strang, 1980). For a
properly formed flow system idealization of n
nodes there will be n solution to this eigenvalue
problem consisting of n pairs of time constants,
¢ (or equivalently their inverse, 1/t — the system
eigenvalues) and their associated eigenvcetors,
{®}.

In some case it may be possible to transform
the product matrix [V]! [F], by: similarity
transformation, to diagonal form leaving the
eigenvalues on the diagonal as:

(T (V17 A7) =
diag [1/t1,1/%, ..., 1/t ] 31)

where [T] is the similarity transformation.
For these cases it will be possible to express
the general solution to the homogeneous pro-
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blem, equation (28), as a linear combination of
simple exponential decay terms:

{(C(0)) = ar (@) exp(—t/u) + 33 {®)exp
(=t + ...t a,{®,) exp(—t/r,)
(32)

where the scalar coefficients, a;, a,, . .., a, are
determined from the initial conditions using
similarity transformation employed as:

{a)=[T]"{C(0)} (33)

The n pairs of time constants and asociated
eigenvectors are often referred to as the eigen-
modes of the system (Palm, 1983) and the
response of the system is often described in
terms of the degree to which each eigenmode
participates. From the form of the free response
(equation (32)), it is clear that as time passes the
contribution of those eigenmodes with larger
time constants will dominant the character of the
response until the response in all zones will be
dominated by the eigenmode with largest time
constant and therefore will appear to be a simple
exponential decay.

For general contaminant dispersal systems
the Gerschgorin circles (Noble and Daniel, 1988)
may be applied, given the volumetric mass matrix
is diagonal, to obtain a poorly bounded, but
computationally inexpensive, estimate of the real
part of system time constants as;

. JH
11/ V(Fyx  Z Fp), foralli. (34)
=1,2,... Y

When all filter efficiencies are 0.0, it assumes
only that the system time constant will fall
within the range (Noble and Daniel, 1988);

Min(V/(2F,))<i<, all 7,=0.0 (35)

as, in these cases the off-diagonal row sum will be
equal to the diagonal values of the flow matrix.
In all cases the system time constants will
have positive real parts, as the product matrix is
a nonsingular M-matrix, and therefore all com-

ponents making up the general solution will ap- -

proach zero with time. That is to say, the
homogeneous contaminant dispersal equations
are stable, the concentrations at all nodes will ap-

proach zero. Furthermore, it can be seen that
the sum of the product matrix and its transpose,

(P17 (F) + (V17 IR T

is also a nonsingular M-matrix with positive real
part of eigenvalues and, therefore, the sum of the
squares of system concentrations (ie., the
(Euclidean norm of the concentration vector)
will decay at very instant of time (Strang, 1980):

dli{C(t)} 11*/dt<0, t=0 (36)
where:

SIC@) YR = (IC, (DR + 1C, ()12
.t 1C ()12,

The response of steady flow systems to non-
zero excitation (i.e., nonhomogeneous case) may
also be expressed in terms of linear combination
of the eigenvectors of the product matrix [ V]
[F]. For practical contaminant dispersal analy-
sis, it is more convenient to solve the system
equation directly using numerical integrants
techniques that are not limited to steady flow
cases.

Solution of System Equations

Steady state behavior

For systems with steady lump mass flow
driven by steady contaminant generation rates
and/or specificed concentrations the response of
the system will, eventually, come to a steady
state (i.e., {dC/dt} = 0) given by the solution of,

[FI{C}Y=(E) (37)

Free response behavior

The free response behavior of steady flow
system has been discussed above and shown to be
closely related to the solution of the eigenpro-
blem given by equatinon (30) that yields system
time constants and associated eigenvectors.

For steady flow system knowledge of the
system time constants provides invaluable insight
into the dynamic character of the system yet
eigenanalysis is computationally time consuming.
Thus, it is attempting to estimate the system
time constants, after single-zone theory, by the
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ratio of the volumetric mass of each zone to the
total air flow out of the zone. This estimate of
system time constants will be designed as the
nominal system time constants and, may be
represented as,

v, = V/F, (38)

For typical situations, the error bound on
this estimate is very large and this estimate of
the actual system time constants is likely to be a
very poor estimate. A variety of techniques exist
that will provide better solution to governing
eigenvalue problem and thereby provide better
estimates of the actual system time' constants
(Wilkinson and Reinsch, 1971).

Dynamic behavior '

The governing systems of equation (equation
(19b)) may be solved for cases of steady flow
with general unsteady contaminnat generation
rates using any number of different finite differ-
ence solution schemes. Here a general form
predictor-corrector method will be employed or
referred to as generalized trapezoid rule.

For cases of unsteady flow it is likely that
this same predictor-corrector solution scheme
will prove useful, if the system flow matrix, [F],
is updated appropriately, although for cases of
rapidly changing flow rates small time steps may
be required to control errors. If difficulties
arrive, an interactive scheme may have to be
nested within the predictor-corrector time
integration scheme.

A finite difference scheme for the approxi-
mate integration of the semidiscrete equation
(19b) may be developed by dividing time domain
into discrete steps,

t, t8t,n=0, 1,.., (n+t2) (39)

Yne1) = tm)

where:

t(O) = initial time,
8t = integration time step.

Demanding the satisfaction of equation
(19b) at each of these steps (Huebner and Thorn-
ton, 1982),

[ﬁ] {é)(n+1)+ [ I;] (dé/dt)(n.'.l):{é) (n+1)
(40)

where:
{Cpug) =(C(t )
(dC/dty 1, =AdC( o),
(EYgua1y= (B0}

Substituting into these equation, the consistent
difference approximation represented by;

(Chpary = (€ +(1-0)81{dCldt) )
+081(dC/dt},,,, 0<0<1,(41)

where 6 = 0 corresponds to the Forward Differ-
ence scheme, 8 = 1/2 corresponds to Crank-
Nicholson scheme, 8 = 2/3 corresponds to
Galerkin scheme, and 6 =1 corresponds to Back-
ward Difference scheme.

A general implicit finite difference scheme is
formulated (Huebner and Thornton, 1982):

[68¢[F]+[V11€dC/dt } sy ={E Y payy

—[13]({c'>(n)+(1—e)at(dé/dr>(,,)) (42a)
or, equivalently;

[F+/@8 VT CY iy ayy= [E] gy

+HO81)[V1{C , (1-8)8t(dCldr }
(42b)

Computationally it is useful to implement
this general finite difference scheme (equation
(42)) as a three steps predictor-corrector algori-
thm;

(1) {841y S(C Yy + (1-0)8{dCYdt Y

predictor (43a)

Q) [@80)[F%+[V]1(dClde}
={E} (yapy— [FITY
) " tsb)

(3) {Cy(y=(C 41yt @82 dCYdEY 1,

Corrector (43c¢)
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This predictor-corrector scheme has been
analyzed by Huebner and Thornton (1982) and
a more general predictor-multicorrector scheme
that includes this implict scheme has been analy-
zed by Hughens (1985) for systems with con-
stant coefficient matrices (i.e., [F] and [ V] are
constants).

MODEL EXAMPLES

Single Zone Examples

It is useful to first consider a single zone air-
flow system that exchanges indoor air with the
exterior environment. Such a single zone system
may be modeled as a grouping of two flow
lumps, corresponding to inlet and exhaust flow
paths, connected to two system nodes, cor-
responding to the inside air zone and the exterior
environment zone as illustrated in Figure 1.

The equations governing this simplest flow
system have the following general form;

[wy, - —wy]\ C, V, 0] \dc,/dt
+
—Wi Wa C 0 V2 dc;/dt
S,
= (44)
S,

From a consideration of mass containuity,
w,=W, is required and therefore equation (44)
may be rewritten in expanded form as:

Wcl —WC2 + VldCI/dt=S1 (453)

—wC+wC,+ V,dC,/dt =S, (45b)

With these equations in hand two cases shall
be proceeded to consider: Case 1: Contaminant
decay under steady fiow condition, and Case 2:
Contaminant decay under unsteady flow condi-
tion.

Case 1: Consider the particularly simple, and
familiar case of contaminant decay from some
initial value, C,(t = 0), under steady flow condi-
tions (w = constant) with concentration in the
exterior environment maintained at the zero
‘level, C, = 0. Under these conditions, equation
(45) may be simplified to:

wC+ V1dCy/dt=0 (46)
whose exact solution is:
C1()=C(t=0)exp(—t/(V1/w)) 47)

where V,/w = time constant of the system.

The exact solution is compared (Figure 2)
to approximate solutions generated using integra-
tion time steps of At =2.0, 1.0, and 0.5 hrs with
C,(t = 0) = 1.0x10°® kg/kg air, V, = 31.87 kg
(assumed air density of 1.1803 kg/m® corre-
sponding to 26°C and 1 atm), w = 12.75 kg/hr
(i-e., 0.4 air exchange per hr), and time constant
=V,;/w=25hr

The accuracy of the general predictor-cor-

‘h
flow lump

® Ca, S, \'p)
2 Exterior Zone

Cl, Sll Vl
*F— .wz
1 1 Interior |2
Zone
—3

Figure 1. A single zone farm structure and corresponding flow model.



Contaminant Concentration, ug/q

o d=1.0 hr
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Fig. 2. Single zone model: contaminant decay
under steady flow conditions.

rector method used to approximate the response
of this system is related to the time constant of
the system being studied. In this case the time
constant is 2.5 hr. From the results of this single
study, it appears that using an integration time
increment equal to a fraction of the system time.
constant will assure practically accurate results.

Case 2: To investigate the consequence of
unsteady flow on the nature of the behavior of
the real system and the numerical characteristics
of its simulation, Case 1 shall be extended by
considering the decay of a contaminant under
conditions of linearly increasing flow rates, that
is to say with;

w=wt; 20 (48)
The decay problem is now governed by the equa-
tion

w°tC1 +V1dCl/dt=O, Cx(t=0) =1.0 (49&)
or

Wotdt = —Vldcl/Cl s Cl(t=0) =1.0 (49b)

The second from, with variables t and C, sepa- .

rated, may be integrated directly to obtain the
exact solution,

C; =1.0exp(—*/(2V,/w°)) (50)

Comtaminant Concentration, ug/g

Again this exact solution is compared to approxi-
mate solutions (Figure 3).

Tire, hr
o dt, diw=1.0, 1.0 hr

O  Exaet + o, dtw=2.0, 2.0 hr 4 d, dtw=0.5, 0.5 v

Fig. 3. Single zone contaminant decay under un-
steady flow conditions with flow updating
at each integration time step. '

For this case, the numerical consequence of
both integration time step, Az, and step-wise ap-
proximation of the unsteady flow, Atw, (ie.,
the flow approximation time setep) can be con-
sidered. (The solution was generated for V, =
31.87 kg, and w® = 3.187 kg/hr.) In this case,
using an integration time step equal to the flow
approximation time step, At = Atw, (ie., up-
dating the system flow matrix at each time step)
provides practically accurate results for even the
relatively large time step for 2.0 hrs (Figure 3).
Updating the system flow matrix every other
time step introduces an offset error equal to the
flow approximation time step (when compared
to results obtained with updating at each time
step) for the first time step that is gradually
diminished with each successive time step (Figure
4). This initial offset error is caused by the
initial zero flow condition.

Contaminant Dispersal Analysis of an
Experimental Test

In this case, system characteristics will be
based on those of an experimental test reported
by Brannigan and McQuitty (1971) involving
measurements of contaminants emission from
gas diffusion units. The study was carried out in
an environmental chamber which dimensions
were such as to simulate one pan of a piggery.



Contaminant Concentration, ug/3

0.8 |-

0.7 -

0.5 -

0.4}

3

o1

Time, hr
+ i dtv=1.0, 1.0 hr

O  Exoct © dt, diw=1.0, 2.0 hr

Fig. 4. Single zone contaminant decay under un-
steady flow conditions with flow updating

at every integration time step.

Estimated capacity of a pan of this size is 20
pigs, each weighting approximately 55 kg. The
properties of the system and excitation used in
the experimental test are: (1) ventilation rate:
280, 443, and 932 m3/hr. (2) Contaiminant
emission rate: CO, = 942 g/hr, NH; = 20.4 g/hr
(based on CO, and NH; density of 1.773 and
0.6894 kg/m>, respectively, corresponding to
26°C and 1 atm).

Brannigan and McQuitty (1971) discussed
two kinds of ventilation systems: (1) short-cir-
cuiting, and (2) displacement systems. In this
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Fig. 5. An environmental chamber modeled as a
25-node multi-zone system.

case, the environmental chamber can be modeled
as a 25-node multi-zone system to study the
variations of contaminant concentration gener-
ated by gas diffusion units (Figure 5). The air-
flow patterns of the two ventilation system are
schematically shown in Figure 6.

The input data for the contaminant dis-
persal analysis shall be included: (1) Entrainment
ratio, r: in order to determine recirculation flow
rate, rw, some estimations of the entrainment
ratio, r, is possible on the basic of a simple
entrainment concept (Liao and Feddes, 1991;
Liao et al., 1991b). Therefore, rw is entirely
induced by the primary flow rate, i.e., by the
entrainment in the inlet jets, is assumed. For
long slot, the entrainment ratio can be determined
by (ASHRAE, 1985), r = rw/w = entrainment
flow / initial flow = ((2/K’) (X/Ho))!/2 where X
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Fig. 6. The air flow patterns for two ventilation
systems in simulation model in the case
of Brannigan and McQuitty, (1971).
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Table 1. Calculated mean equilibrium concentration of NH; and CO, for two
ventilation systems

Equilibrium contaminant concentration

Ventilation system NH,3 CO,
(ppm)

Displacement 58 (50)? 1037 (920)

Short-circuiting 62 (54) 1104 (980)

3The number in the parentheses is the measured values reported by Brannigan

and McQuitty (1971).

= distance from of outlet (= 6m), Hy = width of
slot (= 51mm), and K’ = proportiortality constant
(approximately 7). Thus, r = 5.8. (2) System
flow matrix [F]: the system flow matrix being a
direct grouping sum of the solution of lump flow
matrices by 2-D lumped form of control volumes
represented the conservation of air mass. (3)
Volumetric mass matrix [ ¥]: each nodal volume-
tric air mass assumed to be equal. Therefore, V;
=1.7kg,i=1,2,...,25, based on the reported
volume of 36m?® and an air density of 1.1803 kg/
m? corresponding to 26°C and 1 atm.

" The calculated mean equilibrium concentra-
tions of NH; and CO, at both ventilation sys-
tems are listed in Table 1. To convert from units
of g/m® to ppm (volume), it is assumed that the
ideal gas law is accurated under ambient condi-
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Fig. 7. The comparison of model predicted of
ammonia interacted with height-from-
floor a and different ventilation rates
with that measured by Brannigan and
McQuitty (1971).

tion (26°C, 1 atm), therefore, the conversion
factors for NH; and CO, form g/m® to ppm are
1440 and 560, respectively. Table 1 shows that
the simulated results are compared very closed to
the measured values.

The mean equilibrium concentration of
NH; and CO, at different ventilation rates
changing with height-from-floor and distance-
from-inlet are illustrated in Figures 7-10. Figures
7-10 show that at higher ventilation rates the
predicted and measured velues are compared very
consistent, while a clear discrepancy was observed
at low ventilation rates. The reason may be that
the assumption of macroscopic complete-mixing
used in deriving the system equation does not
hold as well for the low airfow rate since the
density difference between contaminants and air.
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Fig. 8. The comparison of model predicted of
carbon. dioxide interacted with height-
from-floor and different ventilation rates
with that measured by Bannigan and
McQuitty (1971).
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Fig. 9. The comparison of model predicted of
ammonia interacted with distance-from-
inlet and different ventilation rates with
that measured by Brannigan and McQuitty
(1971).

Therefore, a significant departure from homo-
geneity might be expected.

CONCLUSION

1. From a practical point of view, the lump
group/ing via macroscopic approach is intuitively
satisfying and allows consideration of agromicro-
climate systems of arbitrary complexity.

2. From a theoretical point of view, it pro-
vides a framework for the consideration of the
large variety of mass transport processes that
affect the contaminant dispersal in farm struc-
tures and offers additional mathematical tools to
unravel the formal characteristics of whole struc-
ture dispersal models.

3. From a research and development point
of view, it separates the general problems of con-
taminant dispersal analysis into two primary sub-
problems; lump ‘development and development
of solution methods. Research efforts can thus
be focused on the modeling of specific transport
processes, to develop improved or new lumps
(e.g., the kinetic and 1-D diffusion-convection
lumps) or, alternatively, be focused on develop-
ing improved methods for solving the resulting
equations while accounting for the complex
coupling that may exist between the related
thermal, dispersal, and flow analysis problems.
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Fig. 10. The comparison of model predicted of
carbon dioxide interacted with distance-
from-inlet and fiferent ventilation rates
with that measured by Brannigan and
McQuitty (1971).
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