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In-Situ Determination of Field-Scale Dispersion Coefficients
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ABSTRACT

N

One of the most important hydraulic parameters in dealing with the transport of
contaminants in groundwater is dispersivity. The laboratory-measured dispersivity
on a core is usually orders of magnitude smaller than the field-scale dispersivity.

This paper presents a field tracer test method, using the theory of de Josselin de
Jong, to determine field-scale dispersion coefficients in saturated fractured forma-
tions. The method requires one upstream injection well and at least one downstream
observation well. The characteristics of the time-concentration curve observed in the
observation well, as the result of a_tracer released in the injection well, are used to
analyze for dispersion coefficients. The important aspects of this method are (1) the
tracer test is performed in a natural groundwater system, with no induced injection
or pumping during the test; (2) the method will provide information not only on
longitudinal dispersion coefficient, but also on transverse dispersion coefficient, and
the directions of each. The method was successfully applied in a tracer test per-
formed on a research welifield near Creston in Lincoln County, Washington, U.S.A.




INTRODUCTION

Dispersion exhibits unique behavior in frac-
tured rock units. Fracture characteristics govern
dispersion and the direction of plume movement.
Contrary to conventional assumptions about
dispersion, the movement of the plume in frac-
tured rock does not necessarily follow the direc-

tion of hydraulic gradient; and the direction of ,

longitudinal dispersion may deviate from the
direction of plume movement.

Dispersion in fractured formations is also a
scale-dependent parameter. The basic reason for
scale dependence is that a fractured medium
generally exhibits small fractures (on a scale of
centimeters), separated by major fractures with
spacing on the order of meters Of tens of meters,
and finally by faults with intervals in the range of
hundreds of meters and even kilometers. As a
result, dispersion would initially begin with
solute spreading into small-scale fractures. Pro-
gressing downstream, it would successively
migrate into ever larger fractures. Since disper-
sivity is proportional to the fracture intersec-
tion length, the dispersivity would therefore pro-
gressively increase as spreading continues and
then attain a constant value consistent with the
intersection frequency of the main flow channels
in the aquifer.

Three approaches are generally employed in
studying dispersion. The first is that of Bear and
Bachmat,! who statistically averaged over the
medium’s conductance and tortuosity to arrive
at a fourth-rank tensor, which when multiplied
with a second-rank tensor product of average
velocities results in a second-rank dispersivity
tensor.

The second approach uses statistical descrip-
tions of the medium’s hydraulic conductivity to
derive expressions for the dispersion coefficient.
These are exemplified by Gelhar, Gutjahr, and

Naff;® Gelhar and Axness;®> and Winter, Neu-

man, and Newman.* Neuman, Winter, and
Newman® later presented a three-dimensional
theory to describe field-scale' Fickian dispersion
in anisotropic porous media.

The third approach uses measurement of
joint and fracture sets to construct a network of
fractures or can include a probability distribution.

Together with the conductivity tensor and the

vector hydraulic gradient, dispersion coefficients

may be calculated exactly. This method is found
in the publications of de Josselin de Jong,®7+
de Josselin de Jong and Way,” and Way and

McKee.!®* This method is realistic for fractured

systems in that a tracer particle travels a discrete

length, which may be variable, before branching
to another flow path.

A field tracer test procedure using de Josselin
de Jong’s theory?® is proposed to determine field-
scale dispersion coefficients in saturated frac-
tured formations. The proposed method offers
the following advantages over other methods:

1. The tracer test is conducted in an undistur-
bed natural groundwater system. Only one
slug of tracer is released from the upstream
injection well and travels with the natural
groundwater flow. There is no induced
pumping or injection. Reliable field-scale
dispersion effects can be examined.

2. Only one upstream injection well is required,
and, with sufficient knowledge of ground-
water flow, only one downstream observa-
tion well.

3. With the availability of downhole specific-
conductivity probes and automatic data log-
gers, performance of long-term (several
months) passive tracer tests becomes eco-
nomically feasible.

4. This method is applicable in anisotropic
media, especially in fractured formations,
where the direction of longitudinal disper-
sion is usually not parallel to the direction of
groundwater flow.

5. The method provides information not only
on longitudinal dispersion, but also on
transverse dispersion and the respective dir-
ections of each.

The application of the proposed method was
demonstrated successfully in a tracer test per-
formed on a research wellfield near Creston,
Washington.

THEORY

In saturated fractured formations, the con-
centration distribution C(X, Y, Z, T) due to the
injection of a total amount of tracer mass M,
at a point X=0, Y=0, Z=0, and time, T, in an
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anisotropic porous medium is (de Josselin de , [ inl1<t> , >
Jong? eq. 12.2): PGB = T { T T LT
<xl> )
xx <t> i l ' (4)
3
C&X,¥,2,T) -';' l:l-':;— exp [ -35, hisg X, - . In the two-dimensional case, Eq. 4 can be sim-
i ! “ plified to three independent equations (Egs. 5, 6,
L L } ) (1) and 7) by assuming that the tracer concentration
Pow expressed in Eq. 4 is a Gaussian approximation
with respect to time (see Appendix for detailed
derivations).
where
- il - [n «ws? -2 _<w>w>+p <v>2](5)
C =concentration of injected tracer [ML™] z(anf o T ¥ x ¥y wx
X,Y,Z =rectangular coordinates [L] \
(=) . A N N ()
M =mass of injected tracer [M] e A [”n(’” w 4o B ]
2{e*)  arioni
n =effective porosity
T =time [T] sl o “ R
<> =average of x [L] - l[b <V >¥A - ny[« sxt 4+ < >Y ] +D <v >x‘” (7)
2 tipll I
<t> = f
average of t [T] where
By, =is related to dispersion-coefficient ten-
sor Dyy by Eq. 2, and TA=elapsed time for the peak tracer
: i concentration to reach down-
IIBIl =is the determinant of tensor By; [L?]. stream observation well A (Fig.
1 1),
Dix By <t>= 35 by, (2)

where subscripts ik, represent a set of coordi-
nate systems. 8;, is Kroneker delta, where

611 =1f01’i=1,

6y =0fori#1.

The probability distribution is related to the
tracer concentration by:
P(X,Y,Z,T) = C(X,Y,Z,T) n/M. )

Eq. 1 therefore becomes

o*=time increment of concentration
standard deviation observed at
downstream observation well A

(Fig. 1),

C;}elk=peak tracer concentration ob-
served at downstream observa-
tion well A (Fig.-1),

Dy «,Dyy,Dyy=components of dispersion coeffi-
cient,

lIDli=determinant of dispersion coeffi-
cient,

<V,><V,> =x and y components of ground-
water velocity,



X2 YA=x and y coordinates of down-
stream observation well A.

Whether the shape of the concentration pro-
file satisfies a Gaussian approximation has been
a point of discussion by several authors,>!1>12,13
Egs. A 14 and A. 15 in the Appendix suggest
that Gaussian approximation improves with time.
Sudicky et al.** provide an excellent example
showing that concentration profiles of dispersion
plumes approached a Gaussian distribution with
time in a real field study.

Eqs. 5, 6, and 7 provide the theoretical basis
for determination of field-scale dispersion coeffi-
cients in saturated fractured formations.

PROCEDURE

1. Drill at least two wells to the formation of
interest. Use the upstream well as an injec-
tion well and the downstream well as an ob-
servation well. (At least three wells are
needed to obtain hydraulic gradient.)

2. Inject a slug of non-absorbing tracer of mass
M into the injection well.

3. Record time-concentration profile data col-
lected at Well A (XA,YA) (Fig. 1). The
time-concentration curve will have the
characteristics of Cf,‘e,k, T#, and ¢4, as indi-
cated in Fig. 1.

4. Use Darcy’s Law to calculate <V, >, <V >,
and . :

5. Assume a value for |IDll, where

IIDIl = DyyDyy — Dyy’. 8)

Calculate
2TA

El = D

1 [oA]? IIDII ®
2[TA]3

E2 = ————.|IDI| 10
[0A]? (19

E3=21IDI1 1n {[MIDII]l/z*

3o

A, (2 Do [

groundwater flow

4/

Fig. 1. Concentration plume at X=X* and Y=Y*
6. Solve for Dy, Dyy, and Dy, as follows:
Dy <V, >? = 2D, <V, ><V >
+ Dyy<V,> 2=El (12)

Dy [YA]? — 2D, XAYA + D, [X2]?=E2
(13)

Dy <Vy,>YA — Dy [V, >XA + <V, >YA]

+Dyy<V,>XA =E3  (14)

7. Repeat steps 5 and 6 until Eq. 8 is satisfied.

8. Use the same procedure (steps 5—7) for any
other observation well(s).

FIELD EXAMPLE
As part of the overall research program
under NRC contract NRC-04-85-114, a research
wellfield was completed in the northwest quarter
of Section 16, T.25N, R.34E, six miles south of
the town of Creston in Lincoln County, Washing-
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Lincoln County, Washington

T 16-1
L N
\\
\\\16:C ] 100 200
~a Scale, feet
~
\\\ 16.-418 o * Well Location
18-3.—*—\- <168
16-5 S
. ~
> 16-6 ~
16-7 ~
\\
~
~
\\
~
Impermeable Barrier (Roza Formation) -~ >

barrier changes from southwesterly to westerly.
As part of a program of hydrologic testing, a
29-day passive tracer test was performed between
April 28 and May 26, 1987. A concentrated
sodium chloride solution (total volume = 40
liters, total mass = 34.48 1b.) was released into
the top opening (flow top of the Roza Member)
of well 16-4. Fig. 4 is a schematic diagram of

Fig. 2. Well location map.

ton (Fig. 2). Fig. 3 shows the general geologic
cross-section of the study area. The Roza Mem-
ber of the Wanapum Formation was selected as
the target basalt for the study.!® The Roza Mem-
ber consists of two distinct flow horizons: the
flow top and the flow interior. The flow top has
much higher hydraulic conductivity and effective
porosity, and is the main flow path for fluid
transport.

Downgradient Upgradient
Observation Weil injection Wel
v ogger aue ogger| 40 Mo of concentraed
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2000} : _{‘ _______________________ J
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1900} o

/ o

Grande Ronde Formation

1800}
basrier

Fig. 3. Geologic cross-section.

Geologic and hydrologic evidence suggests
the existence of a persistent linear hydraulic bar-
rier trending northwest-southeast in the study
area (Fig. 2). Regionally, the groundwater flow
is southwesterly. Locally, however, the flow of
groundwater on the north side of the hydraulic

Fig. 4. Schematic diagram of tracer test.

the tracer test. The time vs. specific conductivity
profile in downstream observation well 16-3 (Fig.
5) was measured using a set of downhole specific-
conductivity probes and recorded by an automa-
tic data logger. The specific conductivity values
(in microSiemens per centimeter, uS/cm) were
translated into concentration (in milligrams per
liter, mg/1) based on laboratory calibration (1
#Ycm = 0.56 mg/1). The results of this tracer
test were used to illustrate the procedure for cal-
culating field-scale dispersion coefficients using
de Josselin de Jong’s theory.

Darcy’s Law was first used to calculate the
effective porosity of the Roza flow top. Based
on the mean travel velocity of the tracer from
well 16-4 to well 16-3 (30 ft/7.5 days), hydraulic
conductivity (260 ft/day), and hydraulic gradient
(0.09 ft/30 ft), the effective porosity of the Roza
flow top was calculated to be 19 percent.'

Since the direction of local groundwater
flow is affected by the geologic fault nearby and
a precise direction of groundwater flow had not
yet been determined, we initially assumed three
possible groundwater flow directions in our cal-
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Fig. 5. Time/specific conductivity profile, down-
stream observation well 16-3.

culations. Table 1 summarizes the results.
During the tracer test, the specific conduc-
tivities of water in the Priest Rapids Formation
(above the Roza flow top) and the Roza flow
interior (below the Roza flow top) were also
monitored, and leakage of the sodium chloride
solution was detected. The exact amount of the

leakage could not be determined accurately. In
the first set of calculations, a leakage rate of 50
percent was assumed (Table 1). Further analysis
indicated that the dispersivity values were not
very sensitive to the mass of tracer used in the
calculations (Table 2).

In making the assumption of Gaussian dis-
tribution, de Josselin de Jong was able to simplify
Eqg. 1 into three independent equations (Egs. 5,
6, and 7 in the two-dimensional case). These
three equations were used to calculate longitudi-
nal and transverse dispersion coefficients and the
direction of each. Using these values as input in
Eq. 1, a good match was obtained (Fig. 6). The
matched curve was almost identical regardless of
which set of dispersivity values (those in Table 1
or those in Table 2) was used. Therefore, only
one curve is shown in Fig. 6.

CONCLUSIONS

1. The proposed method provides a practical
way to determine field dispersion coefficients
from tracer tests. Since the tracer test is run
in an undisturbed natural groundwater sys-
tem, reliable field-scale values of dispersion
coefficients can be obtained.

2. Because there is no induced injection or
pumping during the tracer test, errors, arising
in other methods from maintaining and
measuring flow rate are eliminated.

3. The method allows us to calculate longitudi-
nal as well as transverse coefficients, based
upon the time-concentration c¢urve from
only one downstream observation well if we

Table 1. Dispersion Coefficients, Roza Flow Top Tracer Test

Dispersion
coefficient Dispersivity
Groundwater flow (ft?/d) (ft)
Direction of
Assumed Velocity Longi- Trans- Longi- Trans- longitudinal
direction (ft/d) tudinal verse tudinal verse dispersivity
S68°W 4.54 25.90 3.55 5.70 0.78 . S62°W
S83°W 5.56 37.36 9.15 6.72 1.65 w
N82°W 7.86 142.88 12.43 1.58 N64°W

18.18

Note: It is assumed that 50% of the tracer remained in the flow top.
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Table 2. Dispersion Coefficients, Roza Flow Top Tracer Test
(Direction of Groundwater Flow = S83°W)

Dispersion

Loss of coefficient Dispersivity

tracer to Tracer mass (ft?/d) (ft)

nearby retained in Direction of

formations flow top Longi- Trans- Longi- Trans- longitudinal

(%) (Ib/ft) tudinal verse tudinal verse dispersivity
20% 2.52 36.05 7.91 6.48 1.42 S83°W
35% 2.05 36.16 8.42 6.50 1.51 S86°W
50% 1.61 37.36 9.15 6.72 1.65 w
65% 1.10 43.78 10.52 7.87 1.89 N82°W

have adequate knowledge of the ground APPENDIX

water flow.

4. The availability of reliable downhole specific
conductivity probes and automatic data log-
gers makes the performance of long-term
(several months) tracer test economically

The following derivation was done by G. de
Josselin de Jong in 1972 when he was a visiting
professor at the New Mexico Institute of Mining
and Technology. The original references are

feasible. difficult to locate; thus it was decided to publish
the detailed derivation in this appendix.

The concentration distribution C(X,Y,Z,T)
due to the injection of a total amount of tracer
mass M, at a point X=0, Y=0, Z=0, and time T, in
an anisotropic porous medium is (eq. 12.28):

176 .

tra |

r2r IiBtI<e>> . <t> <x >
€ 170 C(X,Y,2,T) = = = oxp [ -38, — % - T *
S 188} (2%1) T <t>
3
‘;' 166 Field Data <x.>
2 164 X, = —— T } .
‘(;: 162 1 <t>
2 160
S 1s8 (A. 1)
2 156
g 154 where
" 152

:2: C= concentration of injected tracer

146 ! i 1 1 i i 1 1 [ML-3 ]

o 10,000 20,000 30,000 40,000
Time (min) X,Y,Z = rectangular coordinates [L]

Fig. 6. Time/specific conductivity profiles, field
data and match, downstream observation
well 16-3.

= mass of injected tracer [M]
effective porosity
= time [T}

LR
= average of x [L]
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<t>= average of t [T]

By, is related to dispersion-coefficient tensor
Dik by Eq A2, and
lIBIl is the determinant of tensor By, [L?].
1
Duc By <t> = 3 8§, (A.2)

where subscripts ik,1 represent a set of coordi-
nate systems. &;, is Kroneker delta, where

6y = 1fori=1,
8 =0fori# 1.

The probability distribution is related to the
tracer concentration by Eq. A.3:
PXYZT)=C(XYZT)x 1L, (A.3)

Eq. A.1 therefore becomes

I8 I<t>> L <>
P(X,¥Y,2,T) = exp { - =B ————
i . 7%

(A.4)

Let us now consider T as the changing vari-
able and compute the probability passing a point
A with fixed coordinates XkA. Let the fixed
quantities a,b,c be defined by

1 1
a= 3 By <xk><x1>'z't; (A. 5a)
b= Bkl Xl‘: <X1> (A Sb)
] A
c=3 By X0 X7t <t> (A. 5¢)

Therefore, a is on the order of 1/<t>, b is on the
order of N, and c is on the order of N*<t>,
where N is the average amount of steps for a
particle to arrive at point A. Then Eq. A. 4 can
be written for point A as

1) - e exp [ -zln:!—-a'r-fb-% .

(2n) 3 2 <t>

(A. 6)

This expression is almost Gaussian in' T, which
can be seen by developing the argument of the
exponent, i.e.,

{~(3/2) In (T/<t>) —aT +b — (¢/T) }

is a Taylor series around its maximum.

Development of the argument in the ex-
ponent goes as follows: Let G(T) be the argu-
ment, such that

o(T) ={— aT —% In ZTS“ b— —;-}(A. 7

Then we have

0g _ 3 c

3T —a— p + T (A.8)

azg 3 2¢

—_—= - A.9

oT? 212 T3 (A-9)

2%g 3 6¢

— e —— A. 10

oT? T T ( )
The maximum occurs at TA, such that

og

— =0 A 11

oT [T=T*] (A-11)
or

aTA? + % TA _¢=0, (A. 12)

giving the only useful root

A 3 1 \9
T --Z—"'i: -4-+4ac. (A13)

Since (ac) is on the order of N2, the factor 9/4
can be disregarded. Therefore,

A

-3 4 (A. 14
T 4a+ a { )

Eq. A. 14 can be further approximated by Eq.
A. 15 because+/c/a is on the order of N <t> and
3/4ais on the order of <t>:

TA-J-E
a

Because

(A. 15)
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%
ar? ['r-'r“]
can be written

-[—:-F %TA - 2c],
T

use of Eq. A. 12 gives

[

pmenpae
j_[-c-._]--z.j—z—. (A. 16)

The Taylor expansion of g(T) around T can
now be written as

3g(T) [ . ]
T—

g(m = glt®) + s

2
3 g(T) 2
+ ._g__- (T-TA] + .

21272 [7=1?) A1

Since
ag(T)
aT  [T=T%]

is made zero, this becomes, by use of Egs. A. 7,
A.15,and A. 16,

A
g(T)-b‘Z’IC-—lnzg-;]
2
-a 2 (- .+ (A 18)

where the third-order term can be disregarded,
being an order of magnitude smaller than the
second-order term. Hence, g(T) becomes

2 A
g(r)-b-zm—aE[r-r‘) ..;-%ln«%.(A'19)

So the probability distribution (Eq. A. 6) can be
written as

|I5l|<:>3

P2y - id [b - ZGE] * exp ‘--E [r-r‘]zl .

(2 L 4 TA]

(A. 20)

This is a Gaussian distribution with

Peak value of

probability
a [NB-3 l<t>3
BT g ™ exp [b - 2933)
L (211‘“' (A 21)
Peak value of
concentration
1B I<t>>
e exp (b - 203c) (A. 22)
peak 17 A
A [21‘1‘ ]
Time of peak o o j—c: (A. 23)
a
Standard deviation A _ [1_ [e (A. 24)

2a va

The values CA(T)pe,k, TA, and 0* can be ob-
tained from measurements from field observa-
tions for a tracer test (Fig. 1).

From Egs. A. 23 and A. 24, we find

TA

= W (A. 25)

giving, in conjunction with Eq. A. 5 and the in-
version for B,

T B, <u><x>
2[0”]? 2<t>

(A. 26)

Furthermore, using Eqs. A. 23 and A. 25, we
find

[TA] 3
= —— A .27
2[0*)? ( )
giving, in conjunction with Eq. A. 5,
TA 3 A A
] RS I PN (A. 28)

Finally, using Egs. A. 23 and A. 27 in Eq. A. 22,
we find

(A. 29)

%1||Bl|<t>3¢xp<b>-c:.*l[ A) -xp[

'1'
A

The unknowns are By, <x,>/<t>, and <x,>/
<t>.

In the two-dimensional case, the inversion of
B can be written as
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B.. = Dyy B.. = —ny
<Dl ¥ <e>lDll

(A. 30) -
Bay = Byx Byy = SZ5TDT

Taking further into account that the factor 3
appearing under the root in the expression for P
(Egs. A. 4 and A. 21) was the number of dimen-
sions the following formula would be for two
dimensions:

M HBli<e>? 1 <t> <x >
C(X, X, T) = = 3 exp [ = 3Ba — X~ T
T\ (2 T <t>
<x,>
ey
<t>
(A. 31)
So the system is as follows:
A
T 2 2
- D_<v>° - 2D <V > >4+ D _<v>
[n]z ajipi) P =Y wox ¥ vwox ](A32)
2o
3
A 2 2
o N [D () - 2o Ao n, (M) ]
2(A) atmoin P ¥ it (A.33)
a2
A a T M -1/2
Cpgak {21’1‘ ) exp l o_A' )- 7 (4liplh)

exp

[nxx<vy>YA - nq[wy»(" + <vx>!A] + on<vX>xA] ( A. 34)

2 {ipil
The unknowns are D,,, Dy, Dyy, <V,>,
<V,>, and 1, where <V,> and <V > are the x
and y components of groundwater velocity.
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