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ABSTRACT

A logical-mathematical analysis of an axiomatic model describing the dynamic
behavior of an agroecosystem is presented from the standpoint of engineering
cybernetics. The key point of the model structure is an output coefficient matrix
[B(k)]. From characterisics of thermodynamics and mathematical properties of
dominant eigenvalue of matrix [B(k)], the closed agroecosystem has a zero growth
rate and will force an adjustment on itself when wastes are generated. A control
process is defined as the controlled technological change. Thus the linear feedback
control system can be used to decscribe the behavior of the agroecosystem. The
state variables of the control system are resource quantities, and the control variables
are residual quantities. Control outputs are yielded by the residuals of the system.
The model feedback mechanisms show that if the agroecosystem is controllable, then
the every resources are affected by the system. If the agroecosystem is unobservable,
the application of residuals as control measures will have indeterminate effects on the
controlled processes.

Keywords: Agroecosystem, engineering cybernetics, technology, feedback controi
system, observability, controllability.
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NOTATIONS

[A(k)] agross input coefficient matrix
[AA(k)] a gross input coefficient change matrix
[B(k)] a net output coefficient matrix
[AB(k)] a net output coefficient change matrix

e the unit vector
{1 the identity matrix
{ j(k)} a row vector of control variables
[J(k)] a controllability matrix
[K(k)] an observability matrix
M(k)] a feedback matrix
{q(k)} a row vector of resource quantities
1qr(k)} a row vector of residual quantities
X(k)] a gross input matrix
[Z(k)] a net output matrix

INTRODUCTION

A cybernetic system is a system with feed-
back (Wiener, 1965; Glorioso, 1988; Mesarovis
and Takahara, 1989). A typical feedback system
consists of two subsystems. The behavior of this
system is governed only by past causes. Its feed-
back structure may passively or actively make its
behavior stable, regulate, and may enable it to
damp disturbance. Another type of feedback
system, its feedback subsystem is a controller
through which information about desired output
can be introduced. Actual output information is
fed back to the contrO}ler, and the actual deriva-
tion from desired becomes the basic signals for
corrective actions. According to Patten and
Odum’s work (1981), there is a feedback in the
movement of energy-matter in the biosphere, and
there are informational processes with which to
modulate this environment. The closed-loop
structure appears to dominate ecosystem level
coevolution, which offers potential for the in-
troduction of system perspectives into the evolu-
tionary process. Thus, they claim that ecosystems
are cybernetic systems.

The early evolution of agricultural tech-
nologies show that the transformation from
hunting and gathering to agriculture has been
explanned by archeologists in terms of a con-
trolled feedback process (Bender, 1975).

Analogously, the processes of some ecological
dynamics also have been analyzed in very similar
terms (Bentsman and Hannon, 1988; Hannon,
1986; Mulholland and Sims, 1976).

The rotation of crops, the control of weeds
and pets, manipulation of drainage, manuring
and fertilization are acknowledgements that in-
teractions occur between organism and their
environments in farmed land. Agriculture can
make energy and mineral resources out of one
area into another and in addition it generates
shortages in other self-maintaining system.

If agricultural systems are to maintain pro-
ductivity, they require a continual supply of the
nutrients removed in cropping through shortage
in the ecosystems. However, organic or inorganic
fertilizers are often applied, not simply at a level
sufficient to make up losses but at rates designed
to maximize crop production. Such use of
fertilizer may create changes in neighbouring
ecosystem such as lakes and draingeways into
which excess nutrient becomes leached. This
change can be severe because ecosystems are not
entirely closed system. The effect of residual
pollutant within ecosystem must be an import-
ant part of any sciencs of agricultural ecosystem
or referred to as the agroecosystem (Harper,
1974; Cox and Atkins, 1979; Paul, 1990).

Therefore, one of the main concerns in the
connection with material inputs in the agroeco-
system today is the question about fate of
residuals in the environment.” To predict more
accurate concentration in the various subystems
of the ecosystem is important, whether an agent
is likely to degrade or to accumulate or a transfer
to groundwater, surfacewater or the iair can
occur. Traditional answers to these question
can be obtained via simulation of the dynamic
behavior o a substance in a given agroecosystem.
But if the research topics are emphasized directly
on the agroecosystem itself, the meanings of
ecosystem in terms of agricultural activities will
become more articulate. Relatively few studies
have utilized engineering cybernetics theory in
the -analysis of the dynamics of the agroecosys-
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tem.

This paper focuses on how to apply (1) the
concepts of cybernetic system (Glorioso, 1988;
Mesarovic and Takahara, 1989), and (2) linear
systems theory (Chen, 1984) to describe the
dynamic behavior of an agroecosystem. The
methodology chosen here is in a logical-meth-
amatical sense. That is, it comprises a theorem
or body of theorem logically deducible from a
set of mutually consistent axioms as opposed
to a systematic description of the essential inter-
relations between the variables of reality.

Hopefully, throughout the investigation of
the dynamics of an agroecosystem via the stand-
point of engineering cybernetics can be illus-
trated. It is also hoped that this work will
stimulate the applications of an research on the
engineering cybernetics to the environmental
control of the agroecosystem.

OBJECTIVES

In specific terms, the purposes of this paper
are:

1. Toward a construction theory of an
axiomatic structure of the agroecosystem via the
viewpoint of engineering cybernetics.

2. Explore the time behavior of the indecom-
posable agroecosystem bounded by the laws of
thermodynamics.

3. Develop- a formal model to explore the
dynamics of the agroecosystem based on the
linear systems theory.

MODEL ASSUMPTIONS

The essential characteristics of an agroeco-
system may be summarized in the following six
assumptions.

1. The first and most fundamental assump-
tion is that the agroecosystem is thermody-
namically closed. This implies that is exchange
energy with its environment, but it materially
self contained. No matter can pass into or out of
the system. Since matter can be neither created
or destroyed, it means that all production in the
agroecosystem involves the transformation of a
fixed mass according to a set of well-defined
physical laws.

2. The agroecosystem is not decomposable.
It means all subsystems within the agroecosystem

are opened with respect to its environment.
Closed subsystems within the system can not be
identified. Both energy and matter pass between
the processes of any subystem, including the
agroecosystem and its nearby environment.

3. The material transformation of the
agroecosystem is in terms of a finite number of
processes, each of which uses and generates a
finite number of resources. It is assumed that it
is possible to identify the same number of pro-
cesses and resources; that each is produced by at
least one process; and that each process uses at
least one resource.

4. The agroecosystem of material flows is
described by a system of energy flows. The
material transformations of the system are driven
by energy, and are therefore limited by the law
of thermodynamics. The value of productive
resources is universally a function of entropy
change — the useful work that they perform.
Although energy is neither created nor destroyed
— by the First Law of Thernodymanics. Its
availability for useful work is limited by the
irreversability of entropic processes — the Second
Law of Thermodynamics.

5. The existence of high and low entropy
states of matter is consistent. Not all resources
degrade at the same rate. The outputs of a parti-
cular process will include both new products and
partially degraded instruments of productions.
Hence, wastes is equal to the difference between
the mass of all inputs and the mass of these
valued outputs.

6. The set of material transformations under-
taken in each period of the system is characterized
by fixed coefficients of production. It is intend-
ed to show that at any given moment the system
is operating with an inherited technology em-
bodied in a set of resourcess.

MODEL STRUCTURE

Model prior knowledge: Technology

In this paper technology means the prior
knowledge that bounds all material transforma-
tions of the agroecosystem. It represents the
sum of all acquired chemicophysics and genetics,
theory of communication and cybernetics,
modern theories of algebra and informatics, com-



puters and their languages, etc., (Lyotard, 1984)
or recorded knowledge of material transforma-
tions.

The technology of the agroecosystem for the
kth period can be described by a pair of nonnega-
tive matrices, [A(k)] and.[B(k)]. From Assump-
tions (2) to (6), [A(k)] and [B(k)] are both n-
square forall k = 0:

F A1 32 ... a]nf‘
[AK)] = x), (-
L ap; apy - - - bnn
r bll blZ bln,"
[B(k)] = (), (1-2)
- bnl bn2 e lf’nn_
where:
[A(k)] = an indecomposable matrix of gross

input coefficients,

a partially decomposable matrix of
net output coefficients,

vector of gross input coefficient of
the jth resource in the ith process per
unit mass of the ith resource available
to the system in the kth period.
vector of net output coefficient of
the jth resource in the ith process per
unit mass of the ith resource avail-
able to the system in the kth period.

[B(k)]
{ a;(k)} =

{bi0} =

To see the construction of these coefficients,
two further matrices, [X(k)] and [Z(k)] are
defined. The elements of [X(k)] and [Z(k)],
x;j(k) and z;(k) are denoted as the gross input
and the net output of the jth resource in the ith
process in the kth period, respectively. A non-
negative, time-dependent, n-dimensional row
vector, {q(k)} , is then defined as follows:

{a(0)} ={a:1(0) q2(k) ... q,(0)}. (2

where

the mass of the ith resource available
to the system at the beginning of the
kth period.

The coefficients ajj(k) and b;j(k) are thus defined
by,

ak) =

a; (k)= q(k)" x;(k),
by (k) = g, (k) 2, (k) 3)

In a technologically stationary system, [A(k)] =
[A], and [B(k)] = [B]. In a time-varying sys-
tem:

[4(0)] = [A(k-D)] + [A4(k-D], (41

[B(K)] = [B(k-1)] + [AB(k-1)].  (42)
where [AA4(k-1)] and [AB(k—1)] are the changes
in the coefficients of [A(k—1)] and [B(k-1)].
respectively, as the results of the fluctuation of
the system.

The elements of Aa,-j(k) and Ab,-i(k) may be
greater than, equal to, or less than zero depend-
ing on whether the input or output coefficients
of the jth resource in the ith process is argu-
mented, unchanged, or diminished in the (k+1)th
priod.

Time behavior of the model

The mass of the ith resource available to the
agroecosystem at the beginning of the kth period,
q;(k), may be greater than, equal to, or less than
q;(k+1) for all k. This implies that output of the
ith resource may contract, unchanged, or expand
from one period to the next. However, the con-
servation of mass condition (Assumption 1)
means that the combined mass of all the q;(k),
which using the unit vector, { e }, such as
{q(k)} { e} , must be constant for all k. That is,

{a(O}He} ={qk+}{e}. ()

For the n resources, the mass of the output
of any process at a given period must be equal to
the mass of the inputs of all periods. That is,

q(0{ag} e} =g, {0} {e}.
jell....,n]. (6)



10 see the systematic implications of Equa-
tions (5) and (6), consider the time behavior of
an agroecosystem defined by a given technology
at which all resources are fully applied in all
periods and all resources are produced in positive
quantities. This means that the system is techno-
logically stationary.

In all cases the outputs of an agroecosystem
in the kth period are given by the first-order
difference equation:

{aGe+D} ={a(0)} [BY). ™

Equation (7) clearly shows that the time path of

q(k)} without explicit reference to the input
matrix [A(k)]. In the special case of a tech-
nologically stationary system, the general solu-
tion of Equation (7) is (Hosteller, 1988):

{a@)} ={a@ } (B}, ®)

where { q(O)} is the vector of initial value of
resource mass at k=0.

Equation (8) is referred to as an automatous
behavior, i.e., the system automatically repeated
actjvities of the previous periods. The time path
{ q(k)} in such a way is depended on the values
of the components of { q(0) }, and on the struc-
ture of [B]. )

Physical meanings of matrix [B]

(i) Suppose matrix [B] is indecomposable.
This implies reducing [B] to a block diagonal or
block triangular form is impossible. This means
that it is impossible to identify any subsystem
producing a discrete set of outputs.

As can be seen, when k approaches infinity,
{q(k)} is convergent. Precisely, { q(k)} ap-
proaches a left eigenvector of {B] corresponding
to the dominant eigenvalue of [B], A,,,,(B)
(Gantmacher, 1959). Since [B] is a square non-
negative matrix, it has a dominant eigenvalue:
an eigenvalue that is real, positive, and greater in
absolute value than all other eigenvalues (Seneta,
1981). The set of all the eigenvalues of [B] can
be written as the components of the vector {)\}
= {7\1, A2 A }, and let these components be
ordered such that A, = ;.

There exists a nonnegative matrix [S], and

so a matrix {T] = [S]!, such that [B] = [S]
[D,1[T], in which the first row of [T],{t,},
and the first column of [S], {s; }. are the left
and right eigenvectors of [B], respectively, cor-
responding to A, in which [D, ] is the diagonal
matrix formed from the vector )\} .

By the Perron-Frobenius Theorem (Seneta,
1981), the components of {:tl} and { 8y }
are strictly positive; and matrix |B] is an inde-
composable, nonnegative, square matrix. Then
Equation (8) can be rewritten as,

©
{0} ={a@} 1Dy 1*[7]. ©)

Multiply both sides of Equation (9) by A¥,

{a)} 2¥ ={q@)} [SI([DI A [TT.
(10)

Since A, is dominant eigenvalue of [B], as k ap-
proaches infinity, ([D, ] A )k tends to

10...0
00...0
[Dy) (11)
00...0
Consequently,

’iim{q'(k)} A ={q(0)} [51 (D1 11T].(12)

Since '{q(O)}[S] [Dy] is a row vector that is
positive in its first component only, while the
first row of [T] is a strictly positive left eigen-
vector of [B], for k very large { q(k)} ‘becomes
very close to a left eigenvector of [B] correspond-
ing to A4, (B). .

(ii) if matrix [B] is not indecomposable, it
may be permuted to the form,

(13)

in which the submatrices [By,] and [B,,] are
mxn and (n-m)xn matrices, respectively. If
{q(k)} is partitioned conformably, that is,



fa®} ={{a®}{a®}}, (9

such that {q;(k)} and {q,(k)} are m- and
(n-m)-dimensional vectors, respectively. As can
be seen that the time path of the first m resources
in the system is entirely independent of the time
path of the last (n-m) resources. That is,

{41(")}:&11(0)}‘[311],‘, &)

On the other hand, the time path of the last
(n-m) resources depends on all the processes in
the system. That is, { q,(k)} is found in the
solution to,

{{a: (©} {a(0}} ={{a: (D} |
{4200 }} [B]*.

Therefore, whether the first m processes of
the system are significant in the limit depends on
the relative potential growth rates of the two
subsystems.

(iii) if the potential growth rate of the sub-
system described by [B;,] is greater than that of
the subsystem described by [Ba;], then the
dominant eigenvalue of [B] will be the dominant
eigenvalue of the submatrix [B,;], and vice
versus. If the dominant eigenvalue of [B] is the
dominant eigenvalue of [By, ], thenby a theorem
of Gantmacher (1959) on reducible matrices, the
left eigenvector of [B] corresponding to A, ,,(B)
will be positive. But if the dominant eigenvector
of [B] is the same as the dominant eigenvalue of
[B22], the left eigenvector of [B] corresponding
to Ap,,(B) will be semj-positive and zero in its
first m components. This means that, in the
limit, the first m processes will be significant in
determining  the magnitudes of the last (n-m)
resources only if the potential growth rate of the
first m resources is greater than that of the last
(n-m) resources.

(iv) if [B] is indecomposable and A, (B)>
1, as k gets very large, the system will get very
close to an expansion path at which it will be
growing exponentially, with all resources growing
at the same rate. The same result will occur if
[B] is decomposable and the dominant eigenva-
lue of [B;,] and [B,;] have an absolute value

(16)

greater than one. If [B] is indecomposable and
Amax(B)<1, the system will collapse completely.
The components of { q(k)} will converge to zero.
If [B] is decomposable, then it will be possible
for one subsystem to collapse while the other
expands exponentially. The eventual growth rate
of an automatous system operating with a given
technology is therefore A, (B)-1. The es-
sential point here is that it is only if A, (B) =
1 in indecomposable and decomposable, that the
components of { q(k) } converge in the limit to
stable absolute values. In other words, only if
growth rate is equal to zero will an agroecosys-
tem not contradict the conservation of mass
condition.

(v) The agroecosystem described here is not
protected by the assumption of resources re-
quired in production are freely available in
limitless quantities, i.e., the free gift assumption
(Georgescu-Roegen, 1971). The conservation of
mass condition requires that the dominant
eigenvalue of the output matrix [B] be equal to
unity. If the free gifts assumption fails, as it
must under the conservation of mass condition,
then physical growth rate of the system must be
zero. The growth rate of the agroecosystem, G,
can be defined as follows:

G=({at-D}He}{a®}{ep~1. a7

In view of Equations (5) and (17), the growth
rate of the system, G, must be equal to zero.

Physical meanings of matrix [A(k)]

(i) The conservation of mass has one very
clear implication for the matrix [A] describing
the allocation of resources. In a closed agroeco-
system, [A(k)] will fully account for all resources
in the system in the kth period. It implies that,

{a(0} ={a®} (4R, (18)
This follows from the fact that in a closed
agroecosystem there is no free disposal of re-
sources. Waste material can not be ejected from
the system.

To see the difference between this condition
and the free disposal case, if the system is protec-
ted by the assumption of free disposal, then the
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Equation (18) is replaced by the condition:

{a(0} = {a(0)} (4], (19)
This condition means the possibility that there
will be resources generated within the system
that will be unused by the system. It assumes
that resources that are not used may be costlessly
dumped either inside or outside the system. If
{a()} [A(k—1)], the inherited technology will
obviously satisfy the conservation of mass condi-
tion (18). But if {q(k) } # {a®)} [AK-1)],
then the inherited technology will not satisfy the
conservation of mass condition.

(ii) To obtain [A(k)] = [A(k—1)] only if the
vector of residuals,

{ar(0)} ={a(©} (1] - [4(x-D])
={o}. (20)

Equation (6) shows that { aij(k)}{ e} =
{bi’-(k)} {e} ,forje [1,2,...,n]. Therefore,
whenever { a;(k)} {e] #* {aij(k—l)} {e} , then
by;(k) # bij(k—l) for at least one j € [1, 2,...,
n]. In other words, the conservation of mass
condition (5) insists that any change in the mass
of all or any of the inputs to the ith process will
be matched by an equivalent change in the mass
of any or all outputs of the precess.

(iii) Suppose that there exists excess demands
for the ith resource in the kth period. This im-
plies that,

{a, (0} <{a()}H{a;k-D}.
jell, ..., n], 21

then, there exists a scalar p < 1 such that,

{a,0}={a®}p{a; (k-1)}.
jell,...,n}, (22)

Equation (22) shows that by operating the
process or processes using the ith resource of p of
capacity, the condition may be satisfied.
Therefore, the importance of the. distribu-
tion between Equations (18) and (19) is that a
closed agroecosystem will always be bounded by
Equation (18), while an open systern or a subsys-

tem within an indecomposable agroecossystem
may be bounded only by Equation (19). Hence,
any agroecosystem subjects to change in the
relative mass of resources will be time varying.

In the general case, the time path of the
resources of the technologically nonstationary
system will not be defined by Equation (8), but
by (Hosteller, 1988):

k-1
{0} ={a@} 1" [BG). 23

MODEL FEEDBACK MECHANISMS

A linear cybernetic system

This section considers the capacity of control-
led technological change to affect the limits im-
posed by the environment on the agroecoystem.
The problem is thus the role of controlled tech-
nological change in enabling the agricultural
agents to manage their environment to extend
the life of resources in fixed supply, and to
minimize the damaging effects of waste disposal.
In this paper, controlled technological change
means the deliberate application of residual
quantities in new combinations or forms
(Georgescu-Goegen, 1971). Therefore, tech-
nological change in the general sense is a function
of residuals disposal.

The application of residuals to the agroeco-
system to achieve a particular goal is a process
that has all the characteristics of a controlled
feedback process: the application of a linear
combinations of the resources, or state variables,
of the agroecosystem to change it from an initial
state to some other state. In other words, con-
wrolled technological change seeks to change the
combination of resources available to the agroeco-
system in future periods by changing the combi-
nation of resources adavenced now.

The engineering cybernetic description of
technological change as a control pocess is straight-
forward. Substituting Equation (4-2) into Equa-
tion (7) yields,

{a(k+1)} ={q(k)} ([B(k-1)] +
[AB(k—-D)]), (24)
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where:

[B(k—1)] = inherited technology from the

previous period,

[AB(k—1)] = changes in the elements of
[B(k—1)] by the residual dis-

posals.

If all technological change is assumed to be
controlled, Equation (24) may be written in the
form of the state-space representation of a linear
feedback control system:

{a(k+1)} ={q(0)} [B(k-D] +

(i)} MK, (25)

where:

{j(k)} = p-dimensional row vector of control
variables applied at the beginning of
the kth period,

[M(k)] = n-square feedback matrix describing
the changes in the elements of
[B(k—1)].

The vector of control variables is the vector
of residual quantities generated by the system in
the kth period under the technology inherited
from the (k—1)th period. In view of Equation
(20), vector{j(k)} can be written as:

{itky} ={a(k)} [ 111 - [A(k-D)]], (26)

if [[1] — [A(k—1)]} is nonsingular, then the
feedback matrix [M(k)] can be written as:

[M(0)] = T17] ~ [A(k~D]] ™ [AB(k-1)],
(27)

When the control output of the system is
defined to be the residuals of the system, a com-
plete description of an agroecosystem in terms of
the state-space representation can be written to
be a linear cybernetic system as follows:

(i) the system equation:

{a(k+)) }={a()} [B(k-1)] +

{itk) M1, (28-1)

(i) the output relationship:

{itko} ={aO} 1] - [4(k-D]].
(28-2)

A block diagram for describing this agroecosys-
tem model is illustrated in Figure 1.

A nonstationary system of this type is said
to be controllable if for any initial state { q(O)} ,
and any final state, {q(f)}, there exists a finite
period, k, and a control sequencs, {j(t)}, t=0,
1, ..., k-1,such that {q(k)} ={q(D} (Hostel-
ler, 1988). Generally, such a system may be said
to be controllable if it is possible to transform
it into a system in which state variables, q;(k),
are dependent on the control vector (Freeman,
1965; Chen, 1984). The structure of the re-
sources produced in the agroecosystem may be
brought to a particular state in a finite period
through the application of residuals to the sys-
tem only if the production of all resources in the
system is determined by the ccntrol variables.

The controllability of such a system implies
the knxn controllibility matrix, [J(k)], is of full
rank n (Aoki, 1976). The conirollability matrix
is formed from the sequence of state and feed-
back matrices as follows (Hosteller, 1988):

" [M(0)] 1

[B(1)] [B(0)] [M(2)] (29)

D] =

k-2
LT (B0 MK-D)

The matrix decribes the effects of the controls
applied to the agroecosystem over the k periods
of the control sequence. The final state can be
determined from the system transition equation
giving the general solution of the controlled non-
stationary agroecosystem (Hosteller, 1988):

k-1 k-1
{a(N}= {q(O)}tg) [B®) + 2 {itn}

('ﬁ' [B(h)]) M@ol,  (30)
h=0

The first term on the right-hand said of
Equation (30) describes the contribution of the
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(q(k+1))

{a(k))

»l [1]-[A(k-1)]

DELAY

[Btk-1)]

- (j(k)]

-

Mk)]  |e

Figure 1. Block diagram showing the relation between signal vectors in a discrete-time

state variable agroecosystem model.

initial resource quantities. The second term
describes the contribution of the control efforts
over the interval (0, k—1). The second term is in
facct the product of the knxn controllability
matrix [J(k)] and the kn-dimensional vector,
{ij(0k)}, formed by combining the control
vectors [j(t) ] over the same interval.

If the structure of all outputs in the agroeco-
system is to be controlled, the vector,

k-1
{ain}-{a@} 1L [BO =
{i 0K} (K], (31

will have no zero-valued components and the
mtrix {J(k)] must. be of full rank (Hosteller,
(1988).

Symmetrical to the problem of controllability
is the problem of observability. The observability
of asystem implies that it is possible to determine
the state of the system by measuring the signals
that are system’s outputs in a control sense
(Freeman, 1965; Chen, 1984). A system is said
to be observable if for any initial state, { q(O)} ,
and any final state, { q(f)}, there exists a finite

period, k, and a control output sequencs,. [K(t)],
t=0, . . ., k—1, such that a knowledge of [K(t) ]
and {q(f)} is sufficient to determine {a®}
(Freeman, 1965). A system will be observable it
and only if the observability matrix, [K(k)],
formed from the sequance of state and output
matrices, is of full rank.

Therefore, in view of Equation (28), the
observability matrix, [J(k)], will have the form
(Hosteller, 1988):

[[1] —AM)]] [B(O)]

[K@)] = |[[1) -[A)]] [B(1)] [B(®)] (32)

k—1

IT [B(t)]]
=0

The system will be observable if [[I} —A(h)]] is
of full rank n for all h e [O,...,k-1]. In
other words, the agroecosystem will be observable
if the outputs in a control sense are dependent

([ [AG-1)]]
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uupon the state variables.

Control limits

Considing a subsystem of the agroecosystem
described by the submartices, [A;(k)] and
[B, (k)] , are as follows:

[ [Ay] | [As]
[A1(K)] = -eoeommmbemeeeneans k), (33-1)
[An] | [Az]
[ [B1] fo]
[By(K)] = [ --eoeeemcbomemeenes (), (33-2)
L [0] [B2] |
where:

[A11(K)], [A12(k)], and [Byy(k)] = the inputs
and outputs of the m processes of the sys-
tem, (mxn) matrix,

[A21(k)], [A22(k)], and [Bjz(k)] = the inputs
and outputs of the last (n-m) processes of
the system, 9n-m) xn matrix.

Equation (33) means the technological
matrices represent the subsystem of the environ-
ment from that of the agroecosystem. It is as-
sumed that the gross input matrix is indecompos-
able and that the net output matrix is totally
decomposable.

Suppose that the outputs of the system in a
control sense are the residuals generated by the
agroecosystem, i.e., the quantity of agricultural
resources in excess supply under the inherited
technology of each period. In the tth period
they are given by {(h(t)}[[l)*[Au(t—l)]]-
Hence, the knxn observability submatrix for a
sequence of k periods is of the form:

This is of rank m at most, since the rank of
product matrix can not exceed the rank of each
factor matrix (Gantmacher, 1959). Therefore,
the system is not ohservable.

Similary, let the control variables of the
system be selected from the same vector of con-
trol outputs, but assume that the agricultural
agents of the agroecosystem have the option of
disposing the residuals as waste. In other words,
tet {j;0} <{a()} [a,(t-D)] for all {q(0}~
{a®f [3t-1)]1>0,1 € [1,...,m], andj e

1, ..., n]. The knxn controllability matrix,
[J(K)],is also of rank m at most:

M-y
(0] [0}
(1 -[Au(D]1i[0]]
[B(0)]
K@ =|L (0] [0]]
|[im-TAuten) jory, 34)
- | I [B(o]
| [0] i[o]
- -
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[ [M(0) {[0]]
[ [0] :[O]
[ [M(1)]i[0]

[BO)] |-
[[0] i[0]

[J(k)]: reedeeettaresirasincsannnns (35)

k-2 [TM(k—1) [0]

I [B(t)] | ----ememmeee foeee

B [ [0]  i[0]

The vector {j(0k)} [J(k)] is also at most posi-
tive in its first m components. This implies that
the last (n-m) resources in the agroecosystem ar
are not governed directly by the control vari-
ables.

Equations (34) and (35) means that the sub-
system within an agroecosystem has a limited set
of observations on the state of the agroecosys-
tem. If the subsystem controls the outputs of
only a limited set of resources, then it can not
determine the performance of the agroecosys-
tem.

SUMMARY AND CONCLUSIONS

A logical-mathematical analysis of an axio-
matic model describing the dynamic behavior of
an agroecosystem is presented from the stand-
point of engineering cybernetics. The following



conclusions can be drawn.

1. The system equation of an agroecosystem
can be written in the form of the state-space
representationof a linear feedback control sys-
tem by a discrete-time vector-matrix difference
equation as:

{atctD)} ={ a0} Bk-1] +{i)} MK)].

and control outputs are yielded by the residual
of the system as:

{i00}= {0 } (0 -[AG-D)]1,

in which {q(k)} is a row vector of resource
quantities (state variables), [B(k)] is a net output
coefficient matrix, { j(k)} is a row vector of
residual quantities (control variables), [M(k)]} is
a feedback matrix, and [A(k)] is a gross input
coefficient matrix.

2. From physical and mathematical pro-
perties of the dominant eigenvalue of matrix
[B(k)] and constraint of mass conservation, a
closed agroecosystem has a zero growth rate.
From physical meanings of matrix [A(k)], the
agroecosystem will force an adjustment on itself
whenever wastes are generated. This implies that
an agroecosystem generating residuals does not
have the option of standing still.

. 3. If the agroecosystem is controllable, it
must be possible to affect every resource in it.
If the feedback matrix describing the tech-
nological changes associated with the control are
of less than full rank, the controls will not reach
all the resources produced in the system. The
agroecosystem will be observable if the outputs
in a control sense are dependent upon the state
variables.

4. If the agroecosystem is unobservable, the
application of residuals as control measures will
have indeterminate effects on the controlled pro-
cesses. That is, technological change informed
by the system’s signals based on the existence of

residuals in the agroecosystem can not have

determinate effects on the environment.

5. If the subsystem within an agroecosystem
has a limited set of observations on the state of
the agroecosystem, and if it controls the outputs
of a limited set of resources, then it can not

determine the performance of the agroecosys-
tem.
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