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ABSTRACT

During harvesting and subsequent handling, fruits are subjected
to impact situations which often cause bruises and injuries. The
study of fruit impacts has practical significance in that useful
information can be provided for the proper design of harvesting -
and handling equipment to minimize injury and to maintain the
quality of fruits. A dynamic finite element procedure and computer
program were successfully developed to analyze the stress-strain
and velocity-acceleration distributions within the fruit under impact
situations. The fruit was treated as an axisymmetric body and was
assumed to exhibit a linear viscoelastic response in shear and an
elastic response in bulk. The Wilson-¢ method with 6=1.4 was used
in this dynamic analysis. The model was experimentally verified.
Numerical results were also compared with those reported by other
researchers, and the dynamic analysis was the key feature of this
model.
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Introduction

During harvesting and handling, fruits
are subjected to impacts which often
cause bruises and injuries. Since fruits
are known to behave viscoelastically,
the study of responses of viscoelastic ma-
terials to impacts provides useful informa-
tion for designing harvesting and handling
equipment to minimize injury and main-
tain the quality of the fruit.

Timoshenko and Goodier (1951)
extended Hertz’s contact theory and
derived equations for impact of two
elastic spheres. Tinloshenko and Goodier’s
elasticimpact theory was extended by
Horsfield et al. (1972) to determine the
maximum internal shear stress of fruit im-
pact. Hamann (1970) modified Yang’s
(1966) viscoelastic-contact theory to
allow the calculation of internal stresses
in the impacting body. His scheme was
based on rigid-body motion and a quasi-
static assumption. Herrmann and Peter-
son (1968) developed a finite element
procedure for a static viscoelastic stress
analysis for 2-D solids, which provides a
relatively easy method for internal stress
calculations. Rumsey and Fridley (1977)
modified Herrmann’s finite-element pro-
cedure to include the consideration of
contact and impact. The impact loading
was simulated by moving a rigid plate
onto the top of the sphere. The displace-
ment boundary condition of contact
nodes was introduced by using the ridig-
body impulse-momentum law.

Since impact of fruits is a dynamic
process, any theory based on quasi-static
assumptions is theoretically inaccurate.
Nevertheless, analysis with quasi-static
assumpions can provide results acceptable
for practical use.

In this study, a dynamic finite-ele-

ment procedure was developed to analyze
the stress distribution within the fruit
under impact. The fruit was treated as a
2-D, axisymmetric body linear-viscoelastic
in shear and elastic in bulk. Impact of
fruit on a rigid plate was investigated by
assigning ‘a velocity and acceleration to
each node of the apple as initial condi-
tions before impact (Chen, 1985). The
consideration of inertial effect for each
node (interior and boundary) allows more
accurate predictions of stress distribution
within fruit during impact than is possible
by quasi-static means.

Theory

Stress-Strain Law

The total stress, T and strain, Eij,
tensors can be separated into deviatoric
components, S and €y and volumetric
components, o and 6, as follows:

ij= Tij_osij [1]
0
¢ =55 73 % (2]
1 3
=3 I, 31
3
0=v2 8"'1 [4]
i=1
where
_[0,i%]
ij '{1,i=j Bl

For linear isotropic viscoelastic materials,
S; and o can be expressed by the follow-
ing expressions (Moreland and Lee,
1960):

=2/ %% 4 6
555 = fo é1 (t-'r)-a—T— T [6]
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where ¢, and ¢, are relaxation functions
in shear and bulk, respectively.

As a comparison, for linear isotropic
elastic materials

5;j = 2uey; {8]

ag=ko [9]

where u and k are the elastic shear
modulus and the elastic bulk modulus,
respectively. ”

For our model we assumed that the
fruit is viscoelastic in shear and elastic in
bulk; therefore, equations [6] and {7]
become

de,
;=2 / "oy (t-r) L5 dr
0 T .

10
3 [10]

o =ké [11]
_ The shear relaxation function, ¢,,
can be expressed in the following form:

M .
H®= X G,ePn' [12)

Substituting equation [12] into equa-
tion [10] and performing an incremental

analysis, equations [10] and [11] are
transformed into the following:

Asijn =2 By, Aeijn + sijon [(13]

Aan = kAl9n [14]
where,

Asijn = Sijn — i,y [15]

Aeijn =eun ~ [17]
No_ = 0, — 0, [18]
A8 =86 —6 [19]
At =t —t [20]
M
= I Gl [21]
1 8 At
Jo=—— [1-¢F 22
m BmAtn[ e"m~n] [22]
=23 G _[efm M
Sijo, %%, m (€ —1] Cijmn
[23]
_ -B_At
C1jmn =¢ ﬁm n-1 Cijmn_1
[24]

‘Aeijn-l Jmn-l

In equations [13] and [14]}, the incre-
mental shear modulus, up , is a time
dependent property, whereas the elastic
bulk modulus, k, is a constant. The
history effect resulting from viscoelasti-

city is introduced by the term Sio_
n

Dynamical Analysis

By using the stress-strain law and the
theorem of minimum potential energy and
considering inertial forces, the system
matrix equation of the finite-element pro-
cedure can be expressed as (Bathe, 1982)

MU+SU=R (25]

where M and § are system-mass and
system-stiffness matrices, respectively,

g, U and R are system acceleration, dis-
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placement and load vectors, respectively.
Note that S is function of time.

For time interval t to t + At, assume
1\’4 and S remain constant. Then

~

MtAEt+At + S Agtmt ABHAt [26]
where

Aytmt thﬂAt - Et (271

AUt+ At ,gtﬂm B Ht [28]

AR.,..=R_,.. —R [29]

At T OtEAt T Ot

The element mass matrix, M‘e), can
be expressed as (Zienkiewicz, 1977)

131‘;’—/ © NT p Ndv [30]
e ~

where N is a shape function and p is the
material density.

For a constant-density axisymmetric
body using quadrilateral elements in the
finite-element analysis

M© = ,,/( ) NT N (rdrdzd§) [31]
~ g~ ~
v

By considering only a unit radian and
transforming coordinates r and z to
master element coordinates ¢ and 7,
equation [31] becomes,

r1opl
M(e) = P/ / NT N (ERiNi)
-~ -1 -1 ~ ~

|J] dgdn [32]
Where Ri = nodal r-coordinates

|J] = Jacobian

*
N, =41+ ££)(1 +mn) (331

As pointed out by Zienkiewicz
(1977), the results of analyses using con-
sistent-mass and lumped-mass matrices are
almost identical in practice. For simpli-
city, the lumped-mass procedure is ap-
plied to equation [32].

The Wilson4 method (Bathe and
Wilson, 1976) is used to solve equation
[26]. This method is basically an exten-
sion of the linear-acceleration method;
it does not need a special starting pro-
cedure, and is an implicit method with
unconditional stability if 6 =2 1.37. In
practice, the value of 6 is usually set at
1.4 (Lapidus and Pinder, 1982).

After an incremental analysis with the
Wilson-8 method, equation [26] becomes

St+0m AUt+0At ARt+0At [34]
where,

T = _6

§t+om _gt + (0 At)? ,Mt {35]

ARt+0At ABHAt + M

S 0 43y ] [36]
[ pat~t *3 U

where St +0at b is effective system stiffness

matrix and’ Agt +ga¢ the is effective sys-

tem incremental load vector. The changes
in displacement, velocity, and acceleration
for the time interval, At, can then be ex-
pressed as

AU

t+At t+0at

b o

6 . '
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At

AUt =thAt +7 AHHM [38]
AU, . =50t O 4 Q07
Uiear = U AL+ 2 U+ 6
A:gHAt [39]
finally

Uirar =Yy + AU o (40]

Uiar = Y + AU, [41]

Uieat =,yt + AU p [42]

Numerical Procedure

A finite-element  program  was
developed to include the inertial effect by
modifying a static-viscoelastic-analysis
program for 2-D solids (Herrmann, 1973).
The Wilson-8 method was used for this
modification. This numerical procedure
for dynamic analysis was verified by com-
parison to an analytic solution of wave
propagation in an elastic half-space sub-
jected to uniform surface tractions. The
results of the two methods showed excel-
lent agreement in both normal stress and
particle-velocity values (Chen, 1985).

The procedure was further modified
to handle contact between the viscoelastic
body and a rigid surface. The position of
the rigid surface is fixed and serves as a
reference position to determine whether
any new exterior-boundary nodes on the
fruit are in contact with the rigid surface.
Once a new boundary node contacts this
surface, an adjusted-displacement boun-
dary condition is assigned to this node,
and an iteration of the same time incre-
ment ‘is introduced. The acceleration,
velocity and incremental displacement are

all set to zero for the contact nodes for
the rest of the time increments. Maxi-
mum deformation of the fruit is reached
when the velocity of the non-contact
node nearest to the contact nodes changes
direction.

Results and Discussion

The fruit was initially assumed to be a
sphere, which then remained axisym-
metric under impact loadings. Therefore,
only a half circle domain was needed for
finite-element calculations. Several grid
patterns and mesh sizes were examined.

A grid with 88 elements and 106 nodes
(Fig. 1) was selected because this grid
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Fig. 1. Finite element grid of apple section with
grid pattern of 88 elements and 106
nodes.
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configuration gave good accuracy at low
computing cost.

Experimental Verification

The dynamic finite element procedure
was further verified by the experimental
measurements of acceleration at the
center of the fruit. The instrument design
and experimental procedure have been
discussed by Chen (1985) and Chen et al.
(1985). These comparison are shown in
Figure 2 for Golden Delicious apples and
a drop height of 25.4 mm. The excellent
agreement once again confirms the
validity of dynamic finite element pro-
cedure. The grid with 88 elements and a
time increment of 0.02 ms were used for
the finite element calculations.
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Fig. 2. Verification of dynamic finite element
procedure by experiemental measure-
ments of acceleration at the center of a
Golden Delicious apple for a drop height

of 25.4 mm
Elastic Impact

The finite element program can also
handle elastic problems. For the purpose
of verifying the program, the problem of
impact of an elastic sphere on a rigid plate
after a 0.05-m drop was investigated. The
results of this dynamic analysis were com-
pared with the theory of elastic impact by

Timoshenko and Goodier (1951) and with
the elastic-impact results of Rumsey and
Fridley (1977).

Timoshenko and Goodier gave the
maximum deformation, a,, time at o,

t > and maximum surface pressure, qp,,

as
(151 —p?)MV? 04
“m'( 16EVR (431
147
tm =~ [44]
2E %m
m” 7157/ R (431
where

V = initial velocity of sphere at impact,

v = Poisson’s ratio,

E = Young’s modulus,

M = mass of sphere,

R = radius of sphere.

Comparison of o, t,., and q, for
each of the three methods was made using

the following material properties and
conditions:

V =0.9982 m/s
v =0.2.19
E=18.11 MPa
M=0.155Kg
R =0.0366 m
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Table 1. Comparisons of maximum deformation, time required to reach maximum deformation, and
maximum surface pressure for elastic impacts.

Maximum Time to Max. surface

Method Deformation, oy reach pressure, q
mm ms MPa
*Dynamic finite-element 1.096 1.51 1.99
Rumsey and Fridley 1.107 1.60 2.19
Timoshenko & Goodier 1.097 1.62 2.10

*Time increment used = 0.01 ms
U =9.8 m/s? (initial acceleration)
p = 756.85 Kg/m?3 (density of fruit)

Comparisons of oy, t.,, and qg, are
shown in Table 1. The dynamic finite-
element procedure predicted a lower
surface pressure than those of other
methods. The differences are very small
in maximum deformation predicted by
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Fig. 3. Comparison of deformation curves for
elastic impact on a rigid plate.

the three methods (1%), but the dynamic
finite-element analysis predicts a shorter
time to reach maximum deformation than
the other methods.

The deformation and maximum sur-
face pressure curves are compared in
Figures 3 and 4 where Goldsmith’s (1960)
approximate equation,

. 1.068 Vt
alt) = g, sin (———), {46]
am
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Fig. 4. Comparison of maximum surface-pressure
curves for elastic impact on a rigid plate.

— 29 —



is used for Timoshenko and Goodier’s
theory. _
The maximum deformation and
maximum surface pressure occur at the
same time for both dynamic and the
quasi-static solutions for elastic impact.

Viscoelastic Impact

The results of viscoelastic impact
determined with the dynamic finite-ele-
ment analysis were compared with those
obtained by Rumsey and Fridley (1977)
and Hamann (1970). For making com-
parisons, the material properties derived
by Rumsey and Fridley (1977) and
Hamann (1970) were used. A comparison
with results by Rumsey and by Hamann is
listed in Table 2 for a 0.05-m drop of a
viscoelastic sphere, with radius of 0.0366
m and density of 757 kg/m3, onto a rigid
plate. In all three methods, the maximum
surface pressure occurs earlier than the
maximum deformation does. But, as in~
the case of elastic impact, the dynamic
finite-element procedure predicts lower
maximum surface pressure. The time
required to reach maximum deformation

is the same for the quasi-static methods
but is shorter for the dynamic finite-
element procedure.

The material properties at impact or
high-strain-rate conditions were not the
same as under static or quasi-static condi-
tions. Work has been done by Chen and
Chen (1986) to determine dynamic
material properties.

The uniaxial relaxation stress, o(t),
resulting from a step strain input can be
expressed by a Maxwell model as

o(t) = riE %Eie-ait [47]

1

where E, and o, are constants, € is a
constant uniaxial strain, and t is time.

The stress and strain analysis for
viscoelastic materials by the finite-ement
procedure requires knowledge of the shear
relaxation function, ¢,, (equation [10]).
The shear relaxation function, ¢,, can be
obtained from equation [47], and its
Laplace transform is expressed by
Rumsey and Fridley, (1977) as

Table 2. Comparisons of maximum deformation, maximum surface pressure, and time to reach these

maximum values for viscoelastic impacts.

o1 (1) K o Time to 9 Time to
Method MPa MPa mm reach o, MPa reach q
ms ms
*Dynamic 3.91 ¢ 203t 13.5 1.34 1.80 1.17 1.60
finite-element
Rumsey and 3.9] ¢203t 13.5 1.33 2.00 1.32 1.60
Fridley
Hamann T + 1.32 2.00 1.24 1.50

*Time increment used = 0.01 ms

1 Uniaxial relaxation function ¢(t) = 11.03 e"2%*! MPa and a Poisson’s ratio of 0.41 were used (Rumsey

and Fridley, 1977).
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where K is the elastic bulk modulus.

We developed a program by using an
IMSL routine “FLINV” to invert equa-
tion [48] from the s-domain to the time-
domain (Chen, 1983; and Crump, 1976).
Thus, values of ¢; at discrete points of
time were obtained. A numerical method
(Gil, 1982) was then used to fit a Maxwell
model to the ¢, values. Thus, ¢; may be
expressed as

Bt

M -
H®=2 Ge [49]

This is the same as equation [12].

Constants for the shear relaxation
function, ¢,, obtained for Golden Deli-
cious apple flesh are listed in Table 3.
These data are averaged values. The con-
stants for the uniaxial relaxation function,
¢, are listed in Table 4.

a(t) -alt
€ i

o}

#(t) = [50]

n
5:1 Ee
Note especially that constants deter-
mining the relaxation function developed
here were measured at high-strain rate
loadings and have multiple terms (Table
3) whereas the function given by Hamann
(1970) has only one term. These features
make the material property, ¢,, more ap-
propriate to describe impact loadings,
especially at the initial stage of impact.
. The material properties in Table 3
were used in finite-element calculations

Table 3. Averaged constants for shear relaxation function, ¢,, for Golden Delicious apple flesh. ¢, =

z Gi (exp (-ﬁi))'

Impact
Velocity Gy G, Gs Ga B B, B3 Ba K*
m/s MPa MPa MPa MPa 5! g1 gt st MPa
0.7 0.636 0.111 0.208 0.099 .000347 .0409 1.121 - 3526 1.756
1.2 0.710 0.134 0.265 0.119 .000380 .0420 1.633 41.30 2.047

*K is evaluated at initial time t=0, with Poisson’s ratio of 0.25,i.e., K= X Ei/(3(1—2v)).

Table 4. Averaged constants for uniaxial relaxation function, ¢, for Golden Delicious apple flesh. ¢ =

ZE; (exp (-o4t)).

Impact
Velor(’:ity El Eg E3 E4 [+ 3] [+ 23 Q3 Qg
MPa MPa MPa MPa s st st s!
m/sec
0.7 1.703 0.258 0.461 0.212 .00031 1 .0401 1.075 34.49
1.2 1.908 0.319 0.589 0.255 .000339 .0413 1.569 40.66
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Fig. 5. The effect of impact velocity on deforma-
tion for viscoelastic impact of an apple on
a rigid plate.
for the impacts of apples, with radius of
0.035 m and density of 790 Kg/m?, on a
rigid plate at impact velocities of 0.7 and
1.2 m/s respecitvely. The deformations
and surface pressures are shown in Figures
5 and 6. These results show that apples
with impact velocity of 1.2 m/s took less
time to reach maximum deformation and
maximum surface pressure than apples
with impact velocity of 0.7 m/s. Note
also that at an impact velocity of 0.7 m/s,
maximum surface pressure occurred about
2x107* seconds before maximum defor-
mation. Whereas, at an impact velocity of
1.2 m/s, both occurred at about the samé
time. ‘

Conclusions

The dynamic finite-element procedure
developed in this paper proved successful
in predicting the stress distribution in

v=12mn/s

a

wea

ve0.7 oy

Maximur Surface Pressure q(t),

0 0.8 1.6 2.4 3.2

Time, ms
Fig. 6. Effect of impact velocity on maximum
surface pressure for viscoelastic impact of
an apple on a rigid plate.
viscoelastic fruit during impact. This pro-
cedure predicts lower maximum surface
pressure at the contact region than quasi-
static methods. The maximum surface
pressure may occur prior to the maximum
deformation for viscoelastic impact, how-
ever, both occur at the same time for
elastic impact. Further study is needed to
correlate the . results of this study with
those of material-failure studies.
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