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A Model for Predicting Vortex Motion in a Viscous Wake
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ABSTRACT

The results of the model has shown that the radius of the first
shed vortex core is nearly equal to the boundary layer thickness at
the separation point of the cylinder. Research at Albrook Hydraulic
Laboratory has shown that the initiation of Strouhal vortex is due
to the pairing of four secondary vortexes. A numerical model pre-
dicting the maximum velocity, core radius, tangential velocity profile,
and strength of the nth vortex behind a circular cylinder has been
developed. As input, this model requires the characteristics of the
viscous wake as well as the Strouhal and Reynolds numbers associ-
ated with the flow arround the cylinder. By superposing the velocity
components of infinite vortexes in the wake, the velocity field has
been analyzed. Comparison of the velocity field for both viscous and
potential wakes are good, with some variance existing in the velocity
distribution in the viscous core.
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1. Introduction

The phenomenon of vortex motion in
a potential wake behind a cylinder has
been analyzed since 1912 (Karman and
Ruback, 1912). Fora viscous wake, a com-
bined vortex, or Rankine vortex (Rankine,
1858) which has a solid rotation at the
core, has been proposed instead of the
potential vortex in the wake by Hooker
(1936) and Schaefer and Eskinazi (1959).
However, Hooker considered only one
viscous vortex while all the others re-
mained potential vortexes. Schaefer and
Eskinazi expressed a summation of infi-
nite viscous votexes in terms of time,
kinematic viscosity, and the frequency of
vortex shedding.

This paper has developed a model
which is in terms of the Strouhal number,
the Reynolds number, the diameter of
cylinder, and the order number, n, of the
nth vortex in the wake for predicting
the vortex motion. The results of the
model have been compared with the
Schaefer and Eskinazi experimental data
and have proven its validity. Applying the
model, the velocity field has been satisfac-
torily generated through the computer
simulation. The only difference between
the viscous and potential wakes are bound
in the velocities of the vortex core.

The model has reasonably described
the phenomenon of the initiation of the
vortex shedding behind a cylinder, show-
ing that the first shed vortex is due to the
pairing of many small vortexes which are
generated by the boundary layer flow
along the separation line. This description
has been observed in Albrook Laboratory
at Washington State University, and agrees
well with the hypothesis of Wei and Smith
(1986) who did not use any mathematical
expression.

The objective of this paper is to
demonstrate the suitability, sufficiency,
and applicableness of the model. The
application and the analysis needs to be
extended, as much work remains to be
done.

2. Theoretical Consideration of a
Viscous Vortex

For two dimensional viscous vortex
motion, the vorticity diffusion equation is
8¢ 18¢

(3r7 rar) 2.1

The solution of Eq. (2.1) is (Oseen, 1911;
Lamb, 1932)

2

() = g exp(-7=)  22)

vi

where

{= vorticity

To = circulation of the original vortex
filament

v = kinematic viscosity of the fluid

t= time after the vortex shedding
from the cylinder or age of a parti-
cular vortex in the wake

r= distance from a point to the vor-
tex center

The circulation, or the total vorticity
enclosed by a circle of radius, r, is

r r?
= /0 27r{dr = To(1 — exp(—m)) 2.3)

The circumferential velocity vg at
time t and radius r is

r r
v =5 = 5-(1—exp(— )) 2.4)
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The maximum velocity v, occurs atr, ,
and can be obtained from Eq. (2.4)
(Schaefer and Eskinazi, 1959; Odgaar,
1986) by

(2.5)

rfn = dwi

and
1 Ty
vm 1.42%xr,,

(2.6)

Substituting Eqs (2.5) and (2.6) into Eq
(2.4), the velocity, vy, and the dimension-

less expression of vg/v,, are

vg = 5%(1 - exp(—1.25(;€;)2)) 2.7

:_: = 1.41;1‘-(1 - exp(-1-25(,—:;)2)) (2.8)

For a free vortex, vy = }F;Q;, dividing
by Eq (2.6) yeields

v r
214
Um Tm

2.9)

For a forced vortex, expanding the brack-
ed term of Eq (2.8) as a power series and
cancelling the higher order terms yields

vy _ Tme, (1 _ RIRY
oo =14 {1-(1-125(2)" +..)}

Y 1151

Um Tm

(2.10)

The comparison of a Rankine vortex and
the free vortex is shown in Fig 1.

3. The Model for Predicting the
Viscous Core

In the viscous wake, the radius of
vortex core, 7, is changing with the dis-
tance from the cylinder or with the time
after shedding according to Eq. (2.5). If
the frequency of vortex shedding from

1.5 I !N
Forced
vortex N
-/ \_
..EL —3 ! \\ ve l 4 m
v _ Lo =142
155 ) - Free vortex-* .
1.0 il
! \
3
o /
Um L

0.5 Ranldne vortex

I~

o= 140 1 — exp(~1.25(-= ")}

Figure 1. The comparison of Rankine vortex and free vortex



one side of the cylinder is defined as f,
then the time period of shedding is T = %
The age of the nth vortex, t, may be ex-
pressed in terms of the period T and the
number n of the shed vortex in the wake
as t = nT. Eq. (2.5) can be rewritten as

rm™ = /5unT (3.1)

From the Strouhal number and Rey-
nolds number, S = UT and R il T

and v can be expressed by

d

= — 3.2
T 7S (3.2)

and
u=gﬁ4 (3.3)

From Egs (3.2) and (3.3), the product of
Strouhal number and Reynolds number is

d2
SR = &~ (3.4)

Substituting Eqs (3.2) and (3.3) into Eq.

(3.1), yields
o (m) /5nd?
™ T Y SR

If the flow conditions, S, R, and the
diameter of cylinder, are given, Eq. (3.5)
may be used to predict the core radius of
nth vortex.

In general, n takes on integer values,
n=1,2 3, ..., to designate sequential
vortexes in the wake. The ratio of the
radius of nth vortex, r, "), to the di-
ameter of the cylinder is

rm™ _ [5n
d ~Vsr

The vortex at the time of shedding from
the cylinder is designated as n = 1 and the

3.5

3.6)

. 1) :
core radius, 7, 1) s

7.m(l) _[5
d VSR

The core radius of the nth vortex is pro-
portional to the radius of the first vortex.
The proportion constant is{/ 7, i.e.

rm™ = r(0/a

3.7

3.8)

If the core radius of the first vortex be-
hind the cylinder is given, the nth vortex
can be predicted by Eq. (3.8).

Egs (2.6) and (2.7) may be rewritten
as

3.9)

r

2
=) (3.10)

= ﬂ);(1 — exp(—1.25(

m
The maximum velocity, v, (n) and the
tangential velocity, ve("), of the nth
vortex can be expressed in the following
dimensionless form.

uwm™d _ 1 VSR
Fo 1.4277\/5_;

1
= o.os(§n§)7 G.11)

r

(n)
vd _1.d -5
- 21(1,)(1 —e 4 )

3.12
T (3.12)

Eq. (3.12) is a general equation which
completely describes the vortex motion of
the nth vortex in the wake. From Eqgs
(2.3) and (3.4), the circulation of nth
vortex is

Tp=To(1—e W@ (3.13)

4. The Comparison of the Model with
Schaefer and Eskinazi Experiment data

The experiment data of the Shae-
fer and Eskinazi tests are shown in Tablel.
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Table 1. The experimental data of
Schaefer and Eskinazi test (1959)

X

R T = & ¥

62 3 0.51 0.80 0.12
62 4 0.59 0.48 0.07
62 5 0.65 0.52 0.08
62 6 0.72 0.84 0.13
62 7 0.78 0.96 0.15
62 8 0.83 1.14 0.18
62 10 0.93 1.28 0.20
62 12 1.01 1.98 0.30
62 15 1.12 1.82 0.28
62 20 1.31 2.00 0.31
62 25 1.46 1.42 0.22
94 2 0.36 0.70 0.13
94 3 0.44 0.52 0.10
94 4 0.51 0.80 0.15
94 5 0.57 1.04 0.19
94 6 0.63 1.18 0.22
94 7 0.68 1.26 0.23
94 8 0.72 1.30 0.24
94 10 0.81 1.20 0.22
94 12 0.88 1.16 0.22
94 15 0.98 1.06 0.20
94 20 1.14 0.90 0.18
118 5 0.50 1.34 0.27
118 7 0.60 1.20 0.24
118 10 0.71 1.00 0.20
118 15 0.87 0.32 0.06

First test: R=62,S=0.14

In the Table 1, while ¥ = 6, Ip=
0.72, 4=0.84,and 4=0.13. Hence,

I 4 0384
= 6.46d

This data shows that: the first vortex is
at 3= 6.46 ~ 6, the second vortex is at
3= 12.92 ~ 12, and the third vortex is
at3=19.38 ~ 20. From Eq. (3.7),

(1)
rm'’ 5 _
d V 0.14 x 62 0.75

The values, 2-and lma(-ll, are almost same.

The experimental data of the ratios of
vortex (2) or (3) to vortex (1) are shown
as follows:

Vortex
No. & Im measured predicted
NG
1y 6 0.72
(2
2 12 1.0 ";:‘:(T)' =1402+/2=1.414

3
(3) 20 131 Py =1.819/3=1.732

Second test: R=94,S =0.16
Inthe Table 1, while 3=5, 2=0.57,

k= 1.04,and 3=0.19. Hence,
14 104
=4 =547
h
d”~ k7019
| =5.47d

This data shows that: the first vortex is at
2= 5.47 ~ 5, the second vortex is at § =
10.94 ~ 10, and the third vortex is at ﬁ =
16.41 =~ 15. From Eq. (3.7),

(1) [ 5
™m' ' _ -
d ~Vo0.16 x 94 0.57

The values, " and Lma(i)—, are almost same.

The experimental data of the ratios of
vortex (2) or (3) to vortex (1) are shown
as follows:

~
~

Vortex
No. % '-'3- measured predicted
NA/
() 5 0.57
(2
(2) 10 0.8l —rr"-:‘,.(—l)=1'421\/2=1'414
(3)
(3) 15 098 Lr’:—m-=l.7l9\/3=1.732




Third test: R=118,S=0.17

In the Table 1, while § =5,
g— 1.34, and 7 0.27. Hence,

=0.50,

I 4 13
[ = 4.96d

This data shows that: the first vortex is at
3= 4.96 ~ 5, the second vortex is at §=
9.92 =~ 10, and the third vortex is at § =
14.88 ~ 15. From Eq. (3.7),

(1) [ 5
Tm _ 5 _
d “V017x11 - 0.50

The values, 5§L and 1“,3(2, are almost same.

The experimental data of the ratios of
vortex (2) or (3) to vortex (1) are shown
as follows:

Vortex

No. § ™ Measured predicted

VI
(1) 5 0.50
)

3

2)
10 0.71 me=1420\/2=1414
15 087 Ingr=1.740./3=1.732

/y

The results of the experiment data are
in close agreement with the values pre-
dicted using the model in different Rey-
nolds numbers.

§. The Model for Predicting the Velocity
Field in the Viscous Wake

5.1 The configuration of the flow field

An uniform flow with velocity U
passing over a cylinder is considered to be
the flow field of the model. If the Rey-
nolds number is greater than 40 (Roshko,
1954), the flow field can be classified
three typical regions; formation, stable,
and decay regicn (Schaefer and Eskinazi,
1959). In the formation region, the flow
separates from the cylinder, in which, the
secondary vortexes are formed and com-
bined into a Strouhal vortex (Wei and

Smith, 1986). At the beginning of the
stable region, the first vortex starts
moving to the wake. Prior to the decay
region, the vortexes become depressed
and disappear. This model only predicts
the velocity field in the stable region.

In the stable region, it has been

Ve

- Ts
13 H
9 o ol
Xy 3
(FD, $) (FD+L, 2 (FD+2L,% )
h 3 4
x (FD+%, -%) (FD+5L, -2)
D 2 :
istance 2 4
"oF formation T &
/2 — ¢ —

Figure 2. The flow field and the coordinate system



observed and proven that a staggered
arrangement known as the Karman vortex
street is formed (Karman and Ruback,
1912). This is as shown in Fig. 2. The
number of vortexes in the street are
denoted as odd numbers (1,3,5,...) for the
first row, and as even numbers (2,4,6,...)
for the second row. The length of the
longitudinal separation of two vortexes in
one row is assumed a constant, / (Roshko,
1954; Bloor and Gerrard, 1966). The
transverse separation of two rows, hn, are
varied with respect to nth vortex. In this
model the 4, is assumed as an average
value of the experimental data in order to
compare with the results of potential
wake. The shedding frequency of vortex
is f, and the time period between two
shed vortexes is T.

The coordinate system is choosen as
shown in Fig 5.1. The origin is located at
the center of the circular cylinder. The
distance of the formation region is desig-
nated as FD which is an uninfluenced
variable to the model since it will be can-
celled during difference operations. The
coordinates of vortex centers in the first
row are (FD, 7*), (FD +1, %), .. (FD+
Q‘—,—D-l by, S1m11ar1y those in the
second row are (FD + 7, —{- ),...(FD+

h
%1’ _ k2+1)’.“

The circulations of the vortexes, or
vortex strength, are designated as negative,
or clockwise, in the first row and positive,
or counterclockwise, in the second row.
In this model, the strength of the first

vortex, T, is calculated as a potential
vortex which is (Karman, 1912)
2u.l

o= 5.1
0 tanhlfl G-

where = (.281, u,

is the velocity of .

vortex center, or u, = U ~—;— . From Eq
(3.13), the circulation of nth vortex is

T =o(1 — e~ 3(8)  (5.1a)

5.2 Algorithm of the computation

1. Calculating the distances of point P to
kth vortex center

The coordinate of any point P in the
flow field is given as (x,y). rp, and y,,
are the X and Y components of the dis-
tance, r,, from point P to kth vortex
center. They can be expressed as

k-1
—z M

k-1hi

.tpk‘—‘r-(FD'f'(

Yk =Yy
and

e = \/(J-'Pk)2 + (e G2
2. Calculating the X and Y components
of circumferencial velocity

From Eq (3.12) and changing the n to
Bl | the circumferencial velocity of
point P refer to kth vortex is

ved (-1)* d
-l

ﬁs(%i(:f‘)z) (5.3)

The X and Y components of vy, which are
v, k and v, k respectively, are

( )(1 2(3-‘:1)(%)2)3/_1’5.
Tk

(5.4a)

,(i&)(?f)’)ip_k
Tk

vyk

(5.4b)



3. Taking the summation of the cir-
cumferencial velocity components of
point P

The velocity components of point P
refer to the free stream, ¥ and Vy, are
taking the superposition of the velocity
components of vy with respect to kth
vortex, hence

SR /Tg\2?
- 3—2(k+1)('dh) ).y.P_"

k=1 Tk Tk
(5.5a)
o0
Vy = Z Uyk
k=1
o0 E
= Z Lo (=1) ( d)(l _ T (F)? )IL"
paet d 27 “rg Tk

(5.5b)

The dimensionless forms are

00 k
K__ Z 1) )1—e Ti[;T(d))yPk

\

(5.6a)

st k r
L e W KIS

(5.6b)
5.3 Results of the velocity field

In the model the Strouhal number,
the Reynolds number, the time period,
and the row . separation were obtained

from the experimental data. The tests
were done in a 3 foot wide water flume
with the 1.25 inch diameter test cylinder
placed on the center line of the flume.
The cylinder extended from the flume
bottom to above the water surface. The
water depth was 12 inches. Dye was
released near the water surface. For one
free stream velocity U, the tests at two
diameter intervals measured the average
time period, the velocity of vortex center
relative to the cylinder, and the row
separation. Using these data, the com-
puter program calculated the Strouhal
number, the Reynolds number, the longi-
tudinal separation, and the circulation.
The test results are shown in Table 2.
Column 1 shows the locations. Columns
2 and 3 show the frequency and Strouhal
number. The velocity of vortex center
referring to the free stream, u,, was cal-
culated by u, = U — v, where v, is the
velocity of vortex center referring to the
cylinder. The longitudinal separation is
calculated by / =f]—"§ The circulation,

cir, was calculated by I' = —2%br.

tanh I

The computer program output is
shown in Tables 3 and 4. Table 3 shows
the radius of the vortex core. The dimen-
sionless. velocity components at the loca-
t1,ons of (Z, 5) referring to free stream,
‘r:od and Vrd , and the dimensionless
velocity reterring to the cylinder, (U +u,
+V,) r—da, or FVX, are shown in Table 4.
Figs 3 and 4 show the horizontal and
vertical velocity components referring to

the cylinder.

6. Discussion

6.1 The initiation of vortex shedding

Roshko (1954) has shown that the -
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KINEMATIC VISCOSITY = 0.0000115 FT**2/SEC

Table 2. The experimental data

DATE: 4/28/1988
CYLINDER DIAMETER =1.25 IN
TEMPERATURE =644 F

FREE STREAM VELOCITY =0.331 FT/SEC
REYNOLDS NUMBER = 2995.

X/D F (1/5) s VC (FPS) UC (FPS)  VC/U H(FT) L(FT) CIR(F2/S) STC (F2/S) H/L W/D
6.0 0.526 0.166 0.282  -0.049 0.852 0.183 0.535  -0.066  -0.074 0.343 3.800
8.0 0.563 0.178 0.276  -0.055 0.834 0.165 0.490  -0.068  =-0.076 0.336 3.9u0
10.0 0.580 0.183 0.286  -0.045 0.864 0.177 0.493  -0.055  -0.063 0.359 3.880
12.0 0.526 0.166 0.294  -0.036 0.890 0.196 0.559  -0.051  -0.058 0.350 4.360
1.0 0.556 0.175 0.296  -0.034 0.896 0.242 0.533  -0.041  -0.052 0.453 5.000
16.0 0.541 0.170 0.301  -0.030 0.910 0.258 0.556  -0.037  -0.047 0.u6l 5.340
18.0 0.548 0.173 0.303  -0.028 0.917 0.335 0.553  -0.032  -0.043 0.607 5.860

20.0 0.548 0.173 0.305  -0.02% 0.924 0.350 0.557 =0.029  -0.040 0.628 6.920

22.0 0.548 0.173 0.310  -0.021 0.938 0.3u8 0.566  -0.024  =-0.033 0.615 7.020

Table 3 The radius of vortex cores )
VORTEX NO. 1 2 3 4 8 9 10
CORE RADIUS 0.0102 0.0125 0.0145 0.0162 0.0177 0.0192 0.0205 0.0229  0.0240

{ INCH)

0.0217




Table 4. The velocity field of the viscous wake

X/D= 5.00 Y/D=
VX*D/GAMMA=
VY*D /GAMMA=

FVX*D/GAMMA=

X/D= 6.29 Y/D=
VX*D/GAMMA=
VY*#*D/GAMMA=

FVX*D/GAMMA=

X/D= 7.58 Y/D=
VX#D/GAMMA=
VY*#D/GAMMA=

FVX*D/GAMMA=

X/D= 8.87 Y/D=
VX*D /GAMMA=
VY*D /GAMMA=

FVX*D/GAMMA=

X/D=10.17 VY/D=
VX*D /GAMMA=
VY*D/GAMMA=

FVX#*D/GAMMA=

X/D=11.46 Y/D=
VX*D/GAMMA=
VY*D /GAMMA=

FVX*D/GAMMA=

0.00
-0.173
-0.035

0.3N

-0.147
-0.110
0.417

-0.196
-0.019
0.368
0.00
-0.158
0.069
0.405
0.00
-0.203
-0.013
0.361
0.00
-0.163
~0.097
0.401

0.60
-0.308
-0,023

0.256

0.60
-0.125
-0.117

0.438

0.60
=0.134
-0.017

0.u430

0.60
-0.138

0.083
0.425

0.60
=0.340
=0.012

0.223

0.60
~0.143
-0.108

0.420

1.20 1.80 2.40 3.0 3.61 .21
-0.042 0,226 0.098 0.058 0.040 0.031
-0.013 -0.006 0.000 0.003 0.005 0.006

0.522 0.790 0.662 0.622 0.604 0.594

1.20 1.80 2.40 3.01 3.61 .21
-0.066 -0.006 0.019 0.024 0.024 0.023
-0.122 -0.091 -0.051% -~0.026 ~0.012 -0.005

0.498 0.557 0.582 0.588 0.588 0.586

1,20 1.80 2.40 3.0 3.61 4.21
-0.085 =-0.045 =-0.016 0.001 0.010 0.015
-0.014 -0,011 -0.,008 -0.006 =-0.004 -0.003

0.478 0.518 0.547 0.565 0.574 0.578

1.20 1.80 2.40 3.01 3.61 y.21

~-0.079 -0,018 0.008 0.016 0.017 0.017
0.095 0.070 0.036 0.015 0.005 0.001
0.u485 0.545 0.572 0.579 0.581 0.580

1.20 1.80 2.40 3.01 3.61 .21
-0.073 0.199 0.076 0.040 0.026 0.020
-0.011 -0.010 -0.009 -0.008 -0.006 =-0.005

0.491 0.763 0.639 0.604 0.590 0.584

1.20 1.80 2.40 3.01 3.61 .21
-0.084 -0.024 0.003 g.om 0.0%12 0.013
-0.117 =-0.090 -0.053 -0.030 -0.018 -0.0M

0.480 0.540 0.567 0.574 0.576 0.576

4.81
0.025
0.007
0.588

4.81
0.021

-0.001

0.584
4.81
0.016

-0.002

0.580
4.81
0.016
=0.001
0.580
4.81
0.017

-0.005
0.580

4.81
0.013

-0.008

0.576

5.41
0.021
0.007
0.584

5.u41
0.019
0.001
0.583

5.41
0.016

-0.001
0.580

5.41

0.016
=-0.001
0.579

5.1

0.015
-0.004
0.579

5.41

0.012
-0.006
0.576

6.01 6.61
0.018 0.016
0.007 0.006
0.582 0.580

6.01 6.61
0.017 0.016
0.002 0.003
0.581 0.580

6.01 6.61
0.016 0.015
0.000 0.001
0.579 0.579

6.01 6.61
0.015 0.014

-0.001 -0.001
0.578 0.578

6.01 6.61

0.014 0.013
-0.003 -0.003
0.578 0.577

6.01 6.61

0.012 0.012
-0.005 -0.004
0.576 0.575




X/D= 5,00 Y/D=
VX*D /GAMMA=
VY*D/GAMMA=

FVX*D/GAMMA=

X/D= 6.29 Y/D=
VX*D/GAMMA=
VY*D/GAMMA=

FVX*D/GAMMA=

X/D= 7.58 Y/D=
YX#D/GAMMA=
VY*D /GAMMA=

FVX¥D/GAMMA=

X/D= 8.87 Y/D=
VX*D/GAMMA=
VY*#D/GAMMA=

FVX*D/GAMMA=

X/D=10,17 Y/D=
VX*D/GAMMA=
VY*D /GAMMA=

FVX*D/GAMMA=

X/D=11.46 VY/D=
VX#*D/GAMMA=
VY*#D/GAMMA=

FVX*D/GAMMA=

0.00
~0.173
-0.035

0.39

0.00
-0.147
-0.110

0.417

0.00
-0.196
~0.019

0.368

-0.158
0.069
0.405

0.00

-0.203

-0.013
0.361

0.00

-0.163

-0.097
0.401

~-0.60
-0.120
~0.045
0.443
-0.60
-0.132
-0.126
0.432
-0.60
-0.337
~0.022
0.227
-0.60
-0.11
0.080
0.423
~0.60
~0.143
-0.014
0.420
-0.60
-0. 144
-0.109
0.419

-1.20
-=0.085
=0.051
0.478
-1.20
~0.079
-0.139
0.485
=1.20
~0.073
-0.023
0.u491
-1.20
-0.084
0.089
0.480
~1.20
-0.097
-0.015
0.466
-1.20
-0.087
=0.120
0.477

-1.80
-0.059
-0.051

0.505

-1.80
-0.025
-0.11.‘!

0.539

-1.80

0.196
-0.024

0.759

~-1.80
~-0.026

0.062

0.538

-1.80
=-0.059
-0.015

0.505

-1.80
-0.028
-0.094

0.536

-2.40
~0.040
=0.045

0.524

=2.40
-0.003
-0.077

0.560

-2.40

0.069
-0.024

0.633

-2.40
=0.001

0.026

0.562

-2.ko
-0.031
-0.016

0.533

=2.40
-0.002
-0.058

0.562

-3.01
~-0.028
~0.038

0.536

-3.01

0.000
-0.052

0.564

-3.01

0.031
-0.023

0.595

-3.01

0.004

0.004

0.568

-3.01
-0.014
-0.016

0.550

-3.01

0.005
-0.036

0.568

=3.61
-0.020
-0.032
0.543
-3.61
-0.001
-0.038
0.562
=3.61
0.015
-0.022
0.578
-3.61
0.005
-0.008
0.568
-3.61
-0.005
-0.016
0.559
-3.61
0.006
-0.024
0.569

~4.21
~0.016
-0.027
0.548
-4.21
-0.003
-0.030
0.561
-4.21
0.007
-0.021
0.570
-4.21
0.004
-0.013
0.567
-4.21
0.000
-0.015
0.563
-4.21
0.005
-0.019
0.569

-4.81
-0.013
=0.023

0.551

-4.81
-0.004
=0.024

0.560

-4.81

0.003
-0.020

0.566

-4.81

0.002
-0.015

0.566

-4.81

0.001
-0.015

0.565

-4.81

0.004
-0.016

0.568

=5.41
-0.011
-0.020
0.553
=5.141
-0.005
-0.021
0.559
5.1
0.000
-0.018
0.564
=5.41
0.001
-0.015
0.565
=5.41
0.002
-0.014
0.565
=5.41
0.004
-0.014
0.567

-6.01
-0.010
-0.017

0.554

-6.01
-0.005
-0.018

0.559

~-6.01
-0.001
-0;017

0.563

-6.01

0.001
-0.015

0.564

-6.01

0.002
-0.014

0.565

-6.01

0.003
-0.013

0.567

-6.61
-0.009
-0.015

0.555

=-6.61
-0.005
-0.016

0.559

-6.61
-0.002
-0.016

0.562

-6.61

0.000
-0.014

0.564

-6.61

0.001
-0.013

0.565

-6.61

0.003
-0.013

0.566




(viuetv) 2

y/d

vortex centor—\

t/4d
T had

x/d —i

O -

HEEEEEEEERRERNEN

NREREE

lel/4d > [/74d <=+ L/4d <t L/74d =
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Strouhal number remains almost constant
at 0.2 in the Reynolds number range of
400 < R < 3 x 105, Substituting S =0.2
into Egs (3.6), (3.7), (3.11), and (3.12),
yields

rm(l) 5
d ﬁ 6.1
(1
vm_d _ 4§ 0224(R)} (6.2)
vg(l)d 1

- =2_W(§)(1_e'%(5)2) (6.3)

Eqs (6.1) to (6.6) can predict the core
radius, the maximum velocity, and the
tangential velocity of the first and the
nth vortex.

From Eq. (6.1), in the Reynolds num-
ber range 400 < R < 3 x 103, the first
vortex behind the cylinder has the rela-
tion of

rm(l) _ 5

I "R

Since the laminar boundary layer thick-
ness along a plate is (Daily and Harleman,
1966)

and
r, () b5 (6.7)
n - = .
the r, 1) and d are similar to the & and
vm™d = 0.022 4(E)§ (6.5) *- This could be described as a relation-
Lo n ship between the initiation of the vortex
(m)g 4 shedding and the boundary layer thick-
Yo ¢ _ - 20a(3)’ It coincides to the hypothesis of
= —(=)(] — ¢~ Zon(2 ness. coincides to the othesis o
Ty = a5l —e7 ) (6.6) yp
1
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Figure 6. The horizontal velocity distribution of the potential wake
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Wei and Smith (1986), that is “The most
logical suggestion for origin of secondary
vortexes is that they develop in the
boundary layer separating from the
cylinder.”

Fig 5 shows three photo which were
taken in the Albrook Laboratory, Washing-
tion State University. They show the
process from the secondary vortexes to
the Strouhal vortex. The Strouhal vortex
is combined from four secondary vortexes.
According to the area combination, the
radius of the core of the Strouhal vortex
is the diameter of the secondary vortex
which is the boundary layer thickness.

6.2 The comparison of the velocity dis-
tribution between the viscous wake
and the potential wake

Fig 6 shows the velocity distribution
of the potential wake (Mih and Tseng,
1988). The only difference of Figs 3 and
6 is the velocity distributions at the core
of the vortexes. This is coinciding to the
viscous effect to the potential vortex that
becomes a Rankine vortex.
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