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Moisture Distribution During the Constant Rate Drying
Period for Unconsolidated Porous Media

——Failure of the Diffusion Theory
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' - Abstracts

When drying unconsolidated porous media. one usually encounters a
-constant rate period. During this period the rate of drying is controlled
by external mass transfer and moisture transport within the porous media
is domlnated by capillary forces. Two questions are posed concerning
the internal moisture transport: (1) Is the process quasi-steady? (2) Can
the process be modelled with a diffusion equation? Answers are provided
in terms of theoretical and numerical studies of the governing transport
equation and bnundary conditions.
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simple system illustrated in Fig, 1. It

. consists of a rigid, inert solid phase, a pure
In the anaiysis of drying various ma- liquid phase (water), and a vapor phase
terials, one sometimes cncounters the  consisting of the evaporating species
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Figure 1. Three-phase system.

{water) and an inert gas (air). For such
systems the transport of moisture can be

rigorously described (Whitaker, 1977 and

1980) in terms of a saturation transport
equation that takes the form

capillary Kelvin Marangoni
action effect effect
a3s . a<wl>7 \V
—=V-(1~<s-vs+H( »9S +Kp- '<T>
at T\ ¥ ag ~
<wp>T |
V<T> —-K, - 1
S Gt mg,gv)_()
Clausius-Clapeyron gravity
effect effect

Here S is the saturation defined by

Y

(2)
pg(l —g4)
and <wy->7 is a mass fraction given by
<w;>Y=<p, >7/<p7>7 3)

In both Egs. 2 and 3 we have used <p,>7
to represent the intrinsic phase average

density of the evaporating species.
The first term on the right hand side
of Eq. 1 describes the liquid phase trans-

port owing to capillary action. The
coefficient 5s is given by
K,KS (3p,/25)
K = -8 P @
= Mﬁ(l - &)

in which 5}’3 represents the single phase
Darcy’s law permeability tensor. The
relative permeability, K, is illustrated in
Fig. 2 and the capillary pressure, p_, for a
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Figure 2. Relative permeability for the
wetting phase

drainage process is shown in Fig. 3. While
recent studies (Whitaker, 1984) suggest
that the traditional representations used
for k. and p, may not be appropriate
when the saturation is in the neighbor-
hood of S,, they will suffice in this study
since we will be confined to values of the
saturation greater than S,.

The second term on the right hand
side of Eq. 1 represents the gas-phase
diffusive transport caused by the Kelvin
effect, while the third term represents a
liquid phase flow caused by surface tension
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Figure 3. Capillary pressure — saturation
curve

gradients (the Marangoni effect). Because
surface tension depends on the tempera-
ture, this contribution to the liquid phase
flow is proportional to the temperature
gradient. The fourth term on the right
hand side of Eq. 1 represents a vapor-
phase diffusive flux caused by gradients of
the partial pressure of the evaporating
species. For a system in a state of local
thermal equilibrium (Whitaker, 1986a),
the partial pressure depends on the tem-
perature, and the gradient of the partial
pressure is therefore related to the tem-
perature gradient giving rise to the
Clausius-Clapeyron effect. The last term
in Eq. 1 represents the gravitational effect.
Since the flow in the liquid phase is
described by Darcy’s law (Whitaker,
1986b) the effect of gravity on the
moisture transport naturally appears in

the saturation transport equation. It is of
some interest to note that Darcy’s law for
the gas phase has not been used in the
derivation of Eq. 1. Arguments supporting
this simplification were originally given by
Whitaker (Sec. 5, 1980) and have been

. recently placed on a sound theoretical

basis (Whitaker, 1984).

It is important to keep in mind that
Eq. 1 represents " moisture transport
phenomena in the region where liquid and
vapor co-exist. In the dry region of a
porous medium, the saturation transport
equation is greatly simplified and the
interested reader is referred to the work
of Whitaker and Chou (1983). In order to
solve Eq. 1, one must also solve the volume

averaged thermal energy equation
(Whitaker, Sec. 3, 1980) in order to
determine the temperature gradient.

However, during the constant rate period,
liquid phase transport dominates and the
vapor phase transport can be neglected.
In addition, temperature gradients within .
the porous medium are negligible and the
Marangoni effect can be ignored. For the
system shown in Fig. 4, the constant rate
drying period can be desicribed by

— Dry Air —

S e - XeL
. T Wet Sand -
Gty § -
Figure 4. One-dimensional drying
oS 9 as
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The first-boundary condition requires that
.the moisture flux is zero at x = 0, while
B.C.2 represents the flux at x=L in terms
of a mass transfer coefficient, Kg, and the
driving - force, <p;>7—(py)e. In the
absence of a solution to the energy
equation, one is forced to assume that the
temperature at x=L is the wet-bulb tem-
perature so .that the Clausius-Clapeyron
. equation can be used to determine <p,>7
at x=L. : ;
The simplification that we have
achieved in arriving at Eqs. 6 through 8 is
enormous, and it is reasurring to know
that in a recent, exhaustive study of the
complete problem (Pilitsis, 1986), it has
been demonstrated that Egs. 6 through 8
represent a reasonable model of the
moisture transport process: during the
constant rate period. However, one must
keep in mind that Eqgs. 6 through 8 apply

only to coarse, inert materials such as-

sand for which the problems of adsorbed
or bound moisture can be ignored.

One of the interesting special cases
that might be associated with Egs. 6
through 8 is the case of dominant capil-
lary forces. This situation can be described
by the inequality

oS :

Ks, —a;>> Kggx ‘ 9
and it is this inequality that was used by
Whitaker (1977b) to suggest a diffusion
theory of drying. When Eq. 9 is imposed
on Egs. 6 through 8, we obtain

S 0 oS o
—=— (K —) 1
ot ax( $ ax (10)
0 .
B.C.1 "'§=0,X‘~=0 (1D
ox :

as K¢

—K—=— = _

B.C2
Sx (1— €,)

(<o>7 - (b)) %=L ay

This boundary value. problem represents
an ancient model of drying first proposed
by Lewis (1921). The crucial question to
ask before embracing a diffusion theory
of drying for unconsolidated material is:
Do circumstances exist for which Eq. 9 is
valid? Our response is given in the next
section and is limited to systems which
can be described by Eq. 1.

THEORY

If one imposes the inequality suggested.
by Eq. 9, the moisture transport process
during the constant rate period is clearly
unsteady as indicated by Egs. 10 through

'12. The antithesis of Eq. 9 is the equality

given by

Kk B-g

S 3x 0<x_<L

o8 > (13)
Under these circumstances the saturation
distribution, S(x,t), is quasi-steady and
can be determined directly by Eq. 13 for
any specified average stauration. This ap-
proach was utilized by Ceaglske and
Hougen (1937) to determine saturation
profiles that were ip excellent agreement
with experimental values. o
Certainly it is of interest to ask if Eq.
9 is possible and a diffusion theory of
drying results as indicated by Egs. 10
through 12, or whether Eq. 13 is possible
and ‘a quasi-steady hydrostatic theory of
drying results. The crux of the matter is
that Eq. 9, along with the boundary
condition given by Eq. 8, implies that



Kby <<= ( <p1>74p1)m) x=L (14)
It is important to note that Eq. 9 indicates
that “‘capillary forces are large compared
to gravitational . forces” while Eq. 14
represents an entirely independent con-
straint imposed by a boundary condition.
In order to determine whether both Eq. 9
and Eq. 14 can be satisfied, it will be con-
venient to express the general problem in
dimensionless form. To do so, we express
‘the relative permeability as

Kr = ( IS:SSOO).’

and make Eqgs. 6 through 8 dimensionless
to obtain

% S0 6 &)

(16)

(15)

BC.1 (38 )=(i‘)'l . X=0 a7

B.C2

(-G [1+9(552) 3] X=1 (18)

Here: H represents the dimensionless
capillary height given by
H=p/pge L=h/L (19)

while Q represents the dimensionless mass
flux defined by

Ko (<01>7 — (01)uo)

AeKy

Q=

% 0

Clearly the dimensionless length is given

by X = x/L and in order to complete the
problem statement we need an initial
condition which was taken to be

S=1, X=0
}0=o

35 \_ (9H\™

(ax) (as) 0< X< 1 1)

This condition requires that the saturation
be unity at the bottom of the layer

illustrated in Fig. 4 and that the dimen-
sionless flux given by

+1

(22)
be zero at # = 0. In order to determine
how closely the solution of Egs. 16
through 20 resembles the quasi-steady
profiles, we compared our general results
with those given by the dimensionless
form of Eq. 13 which is

(9~S——)= (ﬁ)l 0<X<1

(S - (3%

ax) - \3s (23)

Before ﬁresenting some of our numerical
results, we should point out that Eqs. 16
through 18, along with Egs. 21, clearly
indicate that the departure of the com-
plete solution from the quasi-steady
solution can only be significant when

(l—So) 3 - 1 TDon-quasi-steady
S—S, -0 drying
(24)

While this situation can occur when S
approaches Sg, only a small portion of the
entire drying process occurs under this
condition.
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CALCULATIONS

The numerical solution of Eq. 16 is
described in detail by Chen (1982) and
here ‘we will only present some of the
results. In order to compare thory with
experiment, we have used a single phase
permeability given by (Bear, 1972)

Kg=6.17x 107 dg (25)

and expressed the capillary height as

h,= p,/oge =P { 1 - exp [-QUI-8)1}

+R(1-8)% + U(S—S¢)~F
(26)
When the parameters are chosen according
to

P=4.9cm, Q =40.0, R = 1.8cm,
U=0.08 cm, F=1.15,Z=1.0, S, =0.09

one obtains good agreement with the

“capillary pressure measured by Ceaglske
and Hougen (1937). From Ceaglske
(1936) we obtain the following parameters
associated with the experimental satura-

tion profiles illustrated in Fig. 5.
14

Figure 5. Comparison Between Theory
and Experiment for the Data of
Ceaglske and Hougen

L=254cm,d =1280 um,
2=2.07x10%1- €, =0.41

Since Ceagliske and Hougen used sand in
their drying studies we should expect
good agreement between theory and
experiment. In addition, we should also
expect the good agreement between the
complete theory and the quasi-steady
solution given by Eq. 23 both because Q
is so small compared to one and because
Ceaglske and Hougen had demonstrated
this fact in 1937. The agreement is shown

in Fig. 6.

it

0.2

= Quasi-Stoady Stala Ey.
= === Full Equation
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] 82 04 . 0 10
X
Figure 6. Comparison of the Complete

Theory with the Quasi-Steady
Solution

In earlier studies (Whitaker, Sec. VII,
1977a; Whitaker 1977b) it was suggested
that a diffusion theory of drying would
result if gravitational effects were negligi-
ble. One might think that this situation
could be achieved with very large values
of the capillary pressure, and to explore
this possibility we used Eq. 26 along with
the parameters

P=49cm,R = 18 cm, U=»0.8 cm
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while holding the remaining parameters in
Eq. 26 constant. This represents a ten-
fold increase in the ratio of capillary to
gravitational effects and the computed
saturation profiles for £ =.0.05 are shown
in Fig. 7. Obviously the profiles shown in
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Figure 7. Theoretical Saturation Profiles
for a Ten-Fold Increase in the
Capillary Height

Fig. 7 do not result from a diffusion
equation, and when the capillary height
is further increased by the use of

P=490cm,R=180cm,U=8cm

we obtain the flat profiles illustrated in
Fig. 8. Obviously these profiles represent
a solution to Eq. 23 with 9H/3S becoming
very large compared to one.

It should be clear at this time that it is
the flux boundary condition given by Eq.
18 that controls the nature of the satura-
tion transport process. One might think
that if Q were made sufficiently large, a
diffusion-like process would be a pos-
sibility. However, our results for various
values of  shown in Fig. 9 indicate only
small deviations (up to 5.6% for £2-= 0.05)
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“Figure 8. Theoretical Saturation Profiles
for a Hundred-Fold Increase in
the Capillary Height
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Figure 9.

from the quasi-steady solution. Obviously
one can obtain significant local deviations
from the quasi-steady solution by making
Q sufficiently large, but large values of
Q quickly drive the surface saturation to
S¢ and the constant rate period is termi-
nated. Vapor phase diffusion within the
porous medium takes .over as the con-
trolling mechanism, and in regions where
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S is greater than S, the liquid is redistri-
buted in a quasi-steady manner.

CONCLUSIONS

The process of drying uncoasolidated,
inert solids during the constant rate
period appears to be a self-controlled
operation in which capillary forces and
gravitational forces are balanced. This
allows one to use a. quasi-steady analysis
to predict the saturation profiles during
the constant rate period.
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NOMENCLATURE

dp effective particle diameter, m

g gravitational constant, m/s?

h, capillary height, m

H h/L, dimensionless capillary
height

ﬁ% Darcy’s law permeability tensor,
m?

K; relative permeability

L depth of porous medium, m

o capillary pressure, N/m?

S saturation

Sy residual saturation

t time, s

X distance, m

X x/L, dimensionless distance

o volume fraction of solid phase

B volume fraction of liquid phase

&y volume fraction of vapor phase

Hg viscosity of liquid, Ns/m?

Pg density of liquid, kg/m3

<p>7Y density of evaporating species in
the vapor phase, kg/m3

(P1)w  density of the evaporating species

" Ceaglske, N.H.,

far from the porous medium, kg/
3

m° o

<w>Y mass fraction of the evaporating
species

Q dimensionlesvs__ interfacial mass
flux
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