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Consistent Estimation of LC-persistent and LC-periodic
Models of Hydrologic Time Series
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Abstract

ARIMA(p, d,q) models have been shown to be a powerful class of
models which are being widely used for forecasting, With d greater
than zero, it may not be possible to use these models for synthetic
data genevation. This property limits their use in fields such as hydro-
logy where designs are often based on generated data. In developing
these models, it is usually assumed that the parameter d is restricted
to take integer values. ’

Recently, a class of models called fractional difference models have
been proposed for use in hydrology. In these models the parameter d is
relaxed to include fractional values. ARIMA models denoted by ARIMA
(p, di, Q) are fitted to these fractional differenced series. The fractional
differenced ARIMA models are more flexible than integer differenced
ARIMA (p, d, q) models. ARIMA (p, d;, q) medels can also be used to.
generate data.

Estimation of the fractional difference parameter d¢ is of obvious
importance in using the fractional difference models. A consistent para-
meter estimation method for LC-persistent and LC-periodic models
proposed by Kashyap and Eom (1985) is- used. The parameters of
aunual hydrologic series are estimated and the results are presented.
The results are then compared with those obtained by maximum likeli-
hood and log-spectrum methods.
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L. INTRODUCTION

Recently, a new approach of estima-
tion of fractional difference parameter
d, has been proposed by Kashyap and
Eom (1984). This new method is based
on the least squares estimation method
jin the frequency domain, The estimator

‘has been shown to be unbiased and -

consistent in the mean square sense with
convergence rate O(1/N). Kashyap and
Lapsa (1982) generalized the first order
long memory time series (LC-persistent
series) to second order long memory time
series (LC-periodic series). The spectral
density of this second order series is
represented by f (w).

fzlw) = [ 2(cosw—cosw0)| ~dr fw(w)

Similar to the LC-persistent series, this
series has indefinite spectral density at
w = w,, and the ‘spectral density decays
as (w — w,) 2%t as w goes far from w;.
The characteristics of the spectral density
of LC-periodic series depends not only on
the differencing parameter d, and noise
spectral density but also.on resonant
frequenty w,. . The spectral density of
LC-periodic series is the same of LC-
persistent series if w, = 0. Thus, the
LC-persistent model is a special case of
the LC-periodic model when w, = 0.

II. DATA USED IN THE STUDY

Two sets of data are used ‘in the
present study. The first set of data con-
sists of Sunspot number series, Central
England mean annual temperature series,
and [Eastern American mean annual
temperature series. Some information
about these three series are given below.

(a) Annual Sunspot series from 1660
to 1975 with 316 observatioms with a
mean value of 9.13 and a variance of
0.362.

(b) Central England mean annual
temperature series has been compiled and
reported in Lamb (1977, Table App.
V. 10). This series starts in 1659 and ends
in 1976 with 318 observations. The mean
value of this series is 9.15°C and varianie
is 0.38.

(c) Eastern American mean annudl
temperature series has also collected by
Lamb (1977, Table App. V. 11). This
series covers the period 1738 to 1967,
with some missing data (for years 1741,
1764, 1778, 1779 and 1780). The average
value of this series is used for these five
missing values. The series has 230 observa-
tions with a mean value of 12.4°C and a
variance of 0.29.

The second set of data consists of four
annual flow series from St. Lawrence,
Gota, Blacksmith and Gunpowder rivers.
Some information about these four river
flow series are given in Table 1.

~Table 1.~ Some Statistical Characteristics of the Data Used in the Study.
River Location Period N(l) AVG(Z) VAR(2) Source
St. Lawrence Ogdensburg, New York 1860-1957 | 97 | 09999 | 0.00753 3
Gota S jotorp-Vanersburg, Sweden | 1807-1957 {150 [ 10 0.03276 3
Blacksmith Hyrum, Utah 1913-1979 | 66 | 1.0 0.112 4
Gunpowder | Loch Raver, Maryland 1883-1978 1 95 { 1.0 0.10895 5
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1. Number of data points (series is given as the modular coefficients of observed and computed

annual flows for water year).

2. AVG, VAR are the mean value and variance of the series.

3. Yevdjevich (1963).

4. Data from 1913 to 1957 are from Yevdjevich (1963), data from 1957 to 1970 are from United
Geological Supply, Water Supply Paper, and data from 1970 to 1979 are from Utah Power and

Light Company, Salt Lake City, Utah.

5. Data from 1883 to 1963 are from Eastman (1972). The rest of the data are from the Department .
of Public Works, Bureau of Water and Waste Water, Baltimore, Maryland.

IIL. TI’-IEORLTICAL ASPECTS

The estimation method for LC-
persistent and LC-periodic series proposed
by Kashyap and Eom (1984) is as follows.

3.1 Estimation in LC-persistent Model
The long memory time series, LC-

persistent series, is expressed in time
domain as follows

Z,= (1Y) *w, t=o,1,.N-1 1]

where z~! is thé unit delay operator and
W, is a zero mean white Gaussian noise
with variance p. The relation between the
spectral density of Z, denoted by f, (w),
and that of W, represented by £, (w),
can be written as follows.

fy(w) = [2(1-cosw)] ™ fyy(w) 2

The discrete Fourier transform (DFT) of
eq.(l)is

Z{k) = F(Z,] (8l

izrk
Z(k) = (1me N ¥ W(k) 14
irkdy ]
2k)=e N |2 sin(%)l‘d' W(K) 1o

fork=0,1, .., N-1. Ineq. 3 Z(k) and |

W(k) are discrete Fourier transforms of
Z, and W, respectively. The magnitude
of Z(k) is given in eq. 4.

| 21| = (2] sin( T ) ¥ Wik

for k = 0,1,...,.N-1 (6]

By applying logarithm operator to eq. 4,
a linear equation can be obtained in
parameter d;.

log] Z(K)| = ~dy log| 2 sn( )| + log| W)

(7]
fork=0,1, ..., N-1.

The relationship Z(k) and d; is given
in eq. 7 as a signal plus noise.

Kashyap and Eom (1984) have shown
that the sequence { WK, k=0,1, ..,
% , the magnitude of a discrete Fourier
transformed white Gaussian noisg se-

quence, is also a white sequence with
Rayleigh densities.

2
w W
— - — > 0

fiwi (@) = 1o

otherwise

— 130 —



Then, they showed that the transform-
ed frequency domain ngQise sequence
{logiW(k)l, k = 0, 1, ..., > }is a white
sequence

with  Eflog| W(k)|]=-1 + élog(,,N)

=

Var[log| W(k)|] = ” (9]

and

where v is Euler’s constant (= 0.5772157)
and p is the variance of time domain noise
sequence W(t). Let Z ={ |1Z(0)l, IZ(1)I,
, IZ(N—l)I}. Then, it can be shown
that Z has the following log-ikelihood
function for § = (d,, p).
N N

-1
L(Z;0) = 2d; S‘log "lsm(—)]) + ¥ log] Z(k)]
k =0

T 2sm(—)| 2 7(k)| 2

2, 10]
g pN !

Now, define a = — E[log {W(k)|] and V(k)
= log{W(k)| + «. Then, V(k) is a zero
mean white noise sequence. Eq. 5 can be
rewritten as follows.

log| Z(k)| =~ dflog| 2 sin(%)l ~a + V(K
(13}

Eq. 11 expresses logi{Z(k)| in terms of
deterministic trend term and additive zero
mean white noise. Thus, the least square
estimation algorithm can be applied to
the above equation. Let us define the
parameter vector § = (d;, a)T. Then the
least square estimator @ is the argument
which niinimizes the following cost func-
tion J(8),

10)

N

= i(bgl Z(k)| + dog|2 sin(-’{—\lk—)l + a)?
k=1

L\’lez

; (log| Z(k)| - GTA(R)) (12

1

where

AT(K) = (-log] 2 sin(%)| -1)

The_cost function is summed from k = 1
0 —5-, because |Z(N—k)| = |Z(k)| for k =
1, 2, ..., 5~ and log|2 sin ( WW ) =

for k = 0. Then, the least square estimator

@ is obtained by the standard formula
(Kashyap and Rao, 1976, p. 137).

N

2= (da)T = (3 AK)
k=1

A(k) log| Z(k)| ) | (13}

Kashyap and Eom (1984) have shown
that the estimators d; and a are unbiased
and consistent in the mean square sense
with variance ~N and ( 1752N ) for large N.
They also showed that p is unbiased and
consistent 12n the mean square sense with

P

variance

3N , where
-1 . '
p=N P20 ) [14]

i

3.2 Estimation in the LC-Periodic Model

The LC-periodic series is expressed in
time domain as follows

=y,
Z, = (1-2coswyz” 1 + 27 Kl W, [15]
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fort=0,1, ..., N-1

where z~! is unit delay operator and W, is

zero mean white Gaussian noise with

variance p. The spectral density of Z,
is given by
fz(w) = p[2(cosw = coswo)]—d" [16]

The discrete Fourier transform of eq. 15
is ’

Z(k) = F[Z,]

g _idnk _d
Z(k)= (1-2coswge N +e N ) Z2W(k)

mkd, . d.
=e [2(005(_)-005%)] *wk) 7

fork=0,1,..., N-1

Then, equation 18 follows from eq. 17

dr
|21)] = | 2cos( 2 j-cosuq)] 2 |W(K)| g
fork=0,1,..,N-1
Let Z = {1Z(0)|, 1Z(D)I, ..., IZ(N-1)|}.

Kashyap and Eom (1984) have shown
that Z has the following log-likelihood
function for 6 = (d;, p, w;)

i“_
(Z 0) =dr}; l()gl ’(ms( )—coswo)l
k—O
N N
2 2 N
+ 3 log 70 = Clog £
k=0 T k=0 =

2(¢o$(,%—k—)-coswo)| d'| Z(k)|*®

19
i [19]

Zén Iz

As discussed in the LC-persistent model,
the cost function (J§) of LC-periodic
modgl can be easily obtained as in eq. 20.

N

39 = 3 (log] 20|
v k=0

+dlog| 2(cos( %)—coswo)l +a)? 20]

In this case, the three parameters are
estimated by minimizing the cost function
by numerical methods. Consequently
parameter estimation in LC-periodic
model is more difficult than in LC-

persistent model, because in the former
the resonant frequency w, must also be
estimated. However, eq. 20 is linear with
respect to parameters if the resonant
frequency w, is known. Kashyap and
Eom (1984) have proposed an algorithm
which is a hybrid of LS and ML estima-
tion methods. The parameters d; and p
are estimated by LS method, and w, is
estimated by ML method. The procedures
of  this hybrid algorithm are described as
below.

a. Guess resonant frequency w, in
the range (0, —2— ).

b: Estimate d; and & by using LS
estimation algorithm.

N
(dpa) = (kZOé(k)f}\Tv(k))"(ki A(Klog] Z(K)| )
= =0

[X) IZ

(21)
where
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AT(9) = (~log] 2(cos{ 2o y-cosu)| 1)

c. Compute the estimate of p by using
eq. 14.

d. Using the estimates d; and p found
in (b) and (c), maximize eq. 19
with respect to w;.

e. Using the estimated resonant

frequency w, from (d), repeat (b)
and (c).

f. Repeat (b), (¢), (d) and (e) until
all three estimates have no signifi-
cant change in successive iterations.

IV. RESULTS AND CONCLUSIONS

- Both the LC-persistent and LC-
periodic methods were used to estimate
the parameters d¢ of some hydrologic and
sunspot number series. These estimates
are given in Tables 2 and 3. It is interest-
ing to note &, changes &f considerably.
Obviously for the nonperiodic series such
as Gota, St. Lawrence and Blackswith
river flow, and Central England and
Eastern American mean annual tempera-
ture series the LC-persistent méthod is
prefene@;=§

The, results obtained by LC-persistent
and LC-periodic methods are then com-

pared with those obtained by maximum
likelihood and log-spectrum methods.
For further details about maximum likeli-
hood and log-spectrum methods, reader is

referred to Rao and Yu (1984). The fol-
lowing conclusions may be presented on
the basis of the results of the present
study and Rao and Yu (1984):

(1) The statistical characteristics of
the ARIMA (p, d, @) and ARIMA (p,
d¢, q) are close to each other.

(2) The rescaled range characteristics
of the data generated by ARIMA (p,d, q)
and ARIMA (p, df, q) models are quite
similar to each other.

(3) The forecasting abilities of
ARIMA (p, d¢, q) models are of the same
caliber.

(4) The theoretical advantages claim-
ed for fractional difference models are
not so obviously present in the charac-
teristics of synthetic data traces.

(5) dy value obtained by LC-persistent
method is less than that obtained by LC-
periodic method when the process is
nonperiodic.

(6) When the process is nonperiodic,
the LC-persistent method is preferred
because dg value is close to that obtained
by maximum likelihood method.

Table 2. LC-Persistent Model Estimates

Series dg P

Gota River Flow 045 0.0265
Gunpowder River FlO\:l 0.28 0.1277
'St. Lawrence River Flow 0.72 0.0039
Blacksmith River Flow 0.61 0.0926
Sunspot Number Series 0.85 294.5

Central England Annual Temp. 0.23 0.3706
Eastern American Annual Temp. 0.38 0.2352
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