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A Hydraulic Design of Transitions
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1. Introduction

Transition is a section of canal structure to be used to connect two different
adjacent canal sections which have different hydraulic properties. Because of the
the difficulty of the theoretical solution for the length of unsteadily varied flow
motion, as for the hydraulic jump length, this paper attempts simply to illustrate
a manner of hydraulic design for transition based on laboratory experimental data
on hydraulic jumps.

2 Hydraulic Jump Length

Laboratory tests on hydraulic jumps were widely done by the U. S. Bureau of
Reclamation and one of the results for natural hydraulic jumps on horizontal
rectangular flumes is shown by the following manner as in Fig. 2.1

The writer found the simplicity of the relationship between F; and L/D; values
in Fig. 21 and created an approximate but practical empirical equation for it with
symbols defined in Fig. 2.2 as follows:

L =10 (Fy=1) 1700038 (F =2) Liitiiiiiiiiiiiiiiimititincinti e cetniinias e ara i 21

dl Fi1=1—18

where,
L = jump length
d; = jet flow depth (at point 1 in Fig. 2.2)
T, = Froude number (at point 1 in Fig. 2.2)
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Fig. 21 Natural hydralic jump length (USBR)

Considering flow conditions of a transition usually ranging around F.= 1.0,
therefore, the Writer’s attention was paid on the lower ranges of F., values, as
well as the L/d; values, in Fig. 21. Among the range from F.,=0 up to about 45,
the relationship between L/d: and F,; can more slmply be expressed by the follo-
wing equation.

L

i [ 2 ) T PP (2.2)
1 Fi1=0—>t35

Here, I. may further be redefined as the natural jump transiition length
required for connecting the conjugate depths from which d; changes to d. and

the converse.
3. Study and Considerations

Because of the above mentioned relationship between the conjugate depths
and the travelling (or transition) length, this concept and the same relationship
will also be true for the reversed phenomenon of hydraulic jump, which namely
means the drawdown flow condition as shown in Fig. 2.3 below. '
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Fig. 2.3 Drawdown flow condition

‘Because the conjugate depths are mutually reversible, therefore, any water
deﬁth can be considered to have another counter-depth (i. e. conjugate depth),
which may be imaginary, by taking the critical depth as a boundary, as each
pair of clonjugate depths has its constant travelling length for a given mass of a
flo'wing body. :

- Based on the iab‘ove assumptions, Eq. 2.2 can be rewritten as follows:
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\,_d_,n =ABS (10 (F;-1)) T A A1)

1 FisD—>13

,éﬂﬁ - 2= ABS (10 (Fa=1)) seereesrreermmmrtiiiiimiiiine s (2.2b)
2 F2 045

The conjugate depth ratio can also be rewritten as follows:

K,=dy/d,= % ( (1+8Fy) F_ 1 E LT T T P PP PP PRSPPI TS (2.32)
K,=d./d:=% ( 1+8F,) ‘%'_1) ........................................................................... (2.3b)
The Froude number is defined to be,
Fi=vy (g dhl)% .......................................................................................... (2.4a)
Fg=V./ (g d,2) e v eeeseeeeeneteteattennttttrteenanrnrennetisans (24b)
where,

F = Froude number

v = mean velocity (m/sec)

g - = gravitational acceleration (m/sec?)

dy, = hydraulic depth (m) = (A/T)

A = cross-sectional water area (m?

T = top width of water surface of canal cross section (m)

* Subscripts 1 and 2 represent the condition at point 1 and 2 as shown in Fig.
22 and 2.3 respectively.
From above equation it can be concluded by saying that no matter computation
begins from any side of conjugate depths, the hydraulic proprties of the other
side will be obtainable with the same equations.

4, Transition Length

Assume a hydraulic jump in a rectangular canal and on intermediate depth,
dn, which is higher than the lower of the conjugate depths but is lower of the
conjugate depths, as shown in Fig. 4.1 below.

4
2

Fig. 41 Definition of symbols

The length, L,; or L,» in Fig. 4.1, may be considered to be the natural transition
length which is necessary for connecting, two different canal sections for depths
d; and d., or d,, and d.. therefore, in practical design, if the imaginary conjugate
depth for a given depth and its natural jump transition length between these two
conjugate depths have been computed, the transition length connection” from any
given intermediate depth-to'either of the conjugate depths can be obtained.
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Referring to the symbols used in Fig. 4.1, the proportional relationship of the
transition length to the jump transition length, L.,/L or L.y/L, can be expressed as
follows by assuming that the variation of the depths is is in a straight line.

ds—d dn-d
Q21 L—I:; .............................................................................................. “n
therefore,
d,-d
IL-L., =L.: :“dg—_di P T T O T L T PO PP 4.2
the dimensionless form of Eq. (4.2) will be,
L (/i) mL e et aet s vt e te et e teean ae veeeer (4.22)

L (d: /dD) -1
Assuming that m;=d./d: and Ki=d./d;,

The transition length from point m to 2 in Fig. 4.1, i.e., L2, can also be derived
from Eq. 41 or 4.2 as follows:
From Eq. 42, by subtractracting L from both sides,

= __,d,@;d,,l_. .............................................................
L..=1L & =d, TL coereeceeinnteeniiiteeteiiiiiiitiotioioteetoniieaoraterctistotoataiattttottaaiannisetnnnns (4‘3)

the dimensionless form will be,

L oy ald) =L e
L = 1 (d2 /dl)—]_ ......................................... (433)
or, using the same notations defined above,
B T ¢ G OSSR ORI PRI
= 1 KL T (4.3b)

In applying the above equations (to canal sections other than rectangular
sections, care must be taken as to the depth. Because the conjugate deptes
defined so far were based on a regular rectangular canal, of which the hydraulic
depth is equal to the depth measured from the canal bottom. In order to avoid
confusion in application, the above equations, 42b and 4.3b may be rewritten as

follows:
LL m —1 )
M’LL= _K!Jll__l. ................................................................................................. (4.4)
Lt mp1 -1
*_iﬂ_ = _,.K!i_l_:l ........................................................................................... (4.5)
where,

A, = cross sectional water area at section m in Fig. 4.1
= top width of water surface of the canal cross section at m in Fig. 4.1

-
|

My = dhm/dhl

K, = dh2/dh1

d,: = hydraulic depth at section 1-in Fig. 4.1

d,: = hydraulic depth at section 2 in Fig. 4.1

dyw = hydraulic depth at section m in Fig. 41"
5. Stream-lined Transition

The traditional ways of designing stream-lined transitions ‘usually proceed as
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follows
D
2)
3)

Decide the transition length, L..
Compute the energy loss for transition, hy=nh,+hg-teee s /
Decide the variation points of the energy curve, which is to be used as a

" mid-point of an S-curve.

4)

5

'6)

7

Compute the radius of the S-curve for the energy curve computation, Ri..

and R,z
Compute the velocity head,h,, for every sub-station at a specific distance

interval within the transition length.
Compute the velocity, v, from the already known velocity head, h,, for for

every sub-station.
Compute the water area, A, and decide the bottom width, b, or water

depth, d, for every station.

This method appears reasonable, but is a.time consuming and labour-intensive
job. The writer suggests that since the reasonable transition length, the energy
loss and the mid-point of the transition length have been decided, it can be
simplified by directly deciding the plan shape of the transition, which precludes
the necessity of computing the minor details.

The simplified method of transition design may be illustrated as follows:

1
2)
3)

4)

Decide the transition length, L,.

Compute the energy loss for transition, hy=h;+he+-eeeeer

Decide the mid-point of the energy curve variation, as well as the distances
from both ends of a transition, L,, L,.

Compute the radius of reversal curvatures (i. e. S-curves) for top widths
and bottom widths in plan designs, and for bottom elevation variations in

profile designs if desired.

Comparing the above two methods, the steps from 1) to 3) are the same. The
transition length, L., in Step 1) can be computed by the ways mentioned in prev-
ious sections. The energy loss for the stream-lined transition in Step 2) can be
computed by the following equations.

h1=
h, =

h;
where
h,
h,
h,

I DR T LR TR R PR P P TP PEPTITPILRORPREERRY (51)
T o TR T T RAALLLELE L T (52)
= S ® Lh ....................................................................................... assaseranane (53)

= inlet loss of transition due to eddy (m)

= ogutlet loss of transition due tc eddy (m)
= friction loss of transition (m)

= coefficient of inlet loss=0.10 (for stream-lined transition)
= coefficient of outlet loss=0.20 (for stream-lined transition)
= velocity head (m) =v/ (2g)

= velocity (m/sec)

S$m= mean energy slope=% (si-+sz)
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s; = energy slope on inlet side

I

s; = energy slope on outlet side
L, = transition length (m)
Taking an example of flume transitions for both the inlet and outlet, the head

loss computation is shown in Fig. 5.1.

/

27 DEILE

Fig, 5.1 Head losses of a flume

The mid-point for the energy curve variation, as well as the distances from
both ends of a transition, L., L, can be computed by the transition length divided
by the proportional ratio of Froude numbers for the inlet and outlet of the canal
sections. The computation method is explained as follows:
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where

F = Froude number = v/ (g dh)%
v = velocity (m/sec)
g = gravitational accelaration = 9.8 m/sec?

d, = hydraulic depth = A/T
A = cross sectional water area (m?
T = top width of water surface at canal section (m)
* The subscripts, a and b respectively represent the point at the inlet and outlet

of a transition.
The radii of curvatures for the known distances, x, and y, which are defined in
Fig. 5.3 can be simply computed by a geometrical theorem (i. e. the theorem of a
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homologous triangle) which may be illustrated as follows.
x:y=y: CR—x)

e (Y ) ettt ettt et s st sttt antens 5
R=1% (——+x) (5.6)

x:y = y:(2R-x}

Fig. 5,3 Definition of symbols for an
enlarging transition

Based on Eq. 5.6, the radii for curvatures for any condition in a transition can
be computed by following branch equations shown as follows:

K, =TT%P‘T ....................................... e eeeeeettarean————aa—— e saeattaaeeaeaeteaeeeeneeenarans 57
K, =ﬁF:F-?bF: ............................................................................................. ceeen (5.8)
X = ABS (& (Wa—Wp))ererreersrssceseostmsmmnsouasiistntasinttesissiststsnsssisassansstassns (5.9)
Vo == Lamy o L, everrersensorennnenntetete e b e (5.10)
Vo = Lp=Kky e Lyssl,—y, rererroenerii e e, (5.11)
K, == K, ® X ceeereennnnntt e e et e e et (5.12)
Ky == Kp 8 X=X X, reerrerretrseremntiiitiinetiieteiiniiiiitttiiseatatettentarereananttosiensssaeais (5.13)
va
R, = % ( -+ Xn) .................................................................................... (5.14)
vi
R, = % (;Xb— + Xu) .................................................................................... (5.15)
where
W, = top width of canal at point 1 (m)
= b1+2 ZiHy = Tareeeeererereees (Fig. 5.3)
Ws = top width of canal at point 2 (m)

= bz+2 Zsz

6. Program for Pockel Programmable Calculator (HP k67)

If a packet programmable calculator, as Model HP-67 produced by Hewlett
Packard, is available, the computatlon can be much facxhtated The flow chart of
the programmed calculatlon is shown m ‘Fig. 61 and the program 1s shown 1n
Fig. 62" SR o - ’ ' )
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n INPUT
Q ; [sTa{allErEzs] .
bhﬁm%M;ﬁm%W%m
2, ; STA 22 ; BTQ SUBROUTINE
4 ; BTAX|& ; BT [3 Y A, d,, V, F, K,
dj
| [GSB '3 ; o
INDUT. i "
s cawvu '
FZE K1 {0=1.0]jo=1-0.0038 (F~2)}
H9:1§Td£g : ‘ OUTPUT Ig wawwﬁw_wl ‘
z Uﬁ“—W”““”“““““g |L/d5=10(F-1)°]
' ! f GSB 31 D""""*“ ﬁi‘j
COMDUTE
Ka, VD
OUIPUI ya Yb
; D~--——w~——~m
: q" oA e e
ctroam- | -~ [(GSB T>—wm—{SUBROUTINE
sLtion oniy) CO}WUTE
W1, W2, X,
Xa, Xp,
OUTPUT xa. xb
Dy
COMPUTE ;
a, Ry, f
OUTPUT Ra, Rb u
: !
X P— |
| COMPUTE, !
‘ (canal bottom) |
Xa, Xb,- :
r

OUTPUT x4, xb

cto

Fig. 6.1 Flow Chart of Programmed Computation
(HP-67)




Fig, 6.2 A HYDRAULIC DESIGN OF TRANSITIONS  (HP-67)
INPUT: Example: Output:
Q s [STOM@A | P8l Fo=2.0 ~ Lt=(3.746)=3.800
; ISTQI0]: Ho; STOM) Hi=1.50 H.=1.50 [B] ya=2.527, yb=1.273
bl,[:_][‘ﬂlbz, -l b,=1.10 b,=1.00 [0 xa=1.463, xb=0.737
Z13 : STQ[2! z,=0 z,=1.5 D] Ra=2.914, Rb=1.467
d,; ﬂmldz, STO(F| d;=1.20 d,=1.20  (at canal bottom)
xa'=0.033, xb'=0.017
D] Ra*=96.057, Rb'=48. 368
Le Ya, Yb Xa, Xb Ra, Rp Xa', Xb'
LY B ICI )
lie1ld B /%] hRTN
DSP3 ST [ LBL
fiP2S | hRIN -| RCL4
[£iGSB[3 [ELBLR 2 +
flpeg fpz9 B flPes
IfiIGSH3 [fiGSB[I STO6 RCLI4
RCL8 fpZs RCL5 fP2S
fPes ~ hRTN | =l +
ggy_g_ [fLBLJ3 STO B
gx>Vl RCLJ3 4 1STOA
GTOT RCLZ B RCLE
___[cTogl . x 5 x|
[FLBLL RCL RCLA STOC
RCLI5 + x> fl-x-
RCLY7 RCLI3 GTO4 1
3 x| 1 RC
STOE STCH STOB -
fIP2Ss RCL3 GTO5 | STOB
RCL RCL2 [FILBLA RCLE
P23 R RCLI4 X
RCLJ7 2| 2 STOD
al x - hRTN
STOC RCL1 B FLBLC
1] + 0 GSBl
- STOD 0] flp2s
RCLEB RCLA 3 iflGSB6
1 hp2y g fPZS
B STOS 1 2
1 RCLA hix2yl B
hx2vy] RCLA - hIABS
- B _lsTod hISTI
STOD RCL[5| [fLBL[5 RC LA
RCL 0| RCLY x|
x - 1] STOE
hPAUSE] 8) - -x-
1 x| hiABS RCLB
0] fivx | RCLIS RCI
X B X x| i
B STOM 1 STI
6] g’ | 0 _bRTN
+ 8] x LB LG
flINT] x| RCL RCLO
1] 1] x RCL2
0 + STORI x|
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7. Examples of Application ‘
Ex. 1 Transition (or Protection) Length After Stilling Pool

¥
64, 87

SECTION B

* Given data:

Q = discharge = 750 cms

Section
Items
A B
| |
Bottom Width by, = 648 m | by = 1000 m
Side Slope Z,=0 Zy = 40
Water Depth dy = 509 m by = 307 m

* Solution: 1
Firstly, compute the hydraulic properties of the two sections which are to be

connected.
Section
No. Item/Equation 1—
,, A ! B

1 Ay, =d, (d;Z;+by) 329,832 344,700
2 T  =byt 2d:7Z, 64,800 124,560
3 duy  =Ay /T, 5.090 2.767
4 vV, =Q/A, 2,274 2,176
5 F, =Vi/v gdu 0.322 0418
6 K, =dp/dm= + (l/~1+8}?§_1) 0.176 0.274
7 dyi =K o dpg 0.897 0.758
8 L/dy, =10 (Fy3—1) 6.797 5,841
9 L = (L/dp) » dus 34,598 16,164

* The imaginary jump transition length for Section A condition requires longer
length (. e. L,=12.855>L,=2.892), therefore, take Section A as a basis and take
B’s depth as the intermediatediate depth to compute the length required for
transition.
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dim = dues =2767 m
dus = duzs =5.090 m

dy1 dnia =087 m . |

ki = das [das =5090/0.897 =5.674
My1 = dnm /de: =2.767/0.897 =3.980

then,

Lo _q_mm=1 _3085-1
L k;—1 “5.674-1

therefore, the transition length, L;z, will be
Lw

=0.554
Ly = ) L=0554 « 34598 =19.16 m

use L, = 1920 m or 20.00 m

Ex. 2 Transition Length of Canal and Structure

W=T
e 22
mjél'l"S”rT 7
— Ty=4.170 “leo
Tath ’ ﬂ

e L2 10— T, 00— 4 — #7550

=1,10 ‘ — ! w : : ]
; l:fl.fL_L wE _I,Igg A
i ——
T e
PLAN e
=3 == 1. i
—— 1.20 1420
SECTION B
PROFILE
* Given data:
Q = discharge = 2.0 cms
Section
Items
A ; B
Bottom Width by = 1.10m ] by = 1.00 m
Side Slope Z, =0 [ Zy =15
Water Depth dy = 120m l dyg = 120 m

# Solution:
Because it is hard to judge which section requires a longer natural transition
length. hydraulic property computations are to be made for both sections as

follows:
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Section
No. Item/Requation
A : B
1 A, =d; (diZy+by) 1.320 3,360
2 T, =b,+2d,Z, 1.100 4,600
3 dpy  =A,; T, 1,200 0,730
4 Vs =Q /A, ' 1,515 0,595
5 F, =Vi/v g dps 0,442 0.222
6 Ky =duni/dus =% (1/ 148 F% —1) , 0,300 0.091
7 dyy =Ky o du : 0.360 0.066
8 L/d,; =10 (Fy —1) 5601 7,788
9 L =(L/dps) * dus ‘ 6.726 5680

* From the above results, it is now known that L, is longer than L. Therefore,
take Section A as the base for computing the transition length required for
connecting Section A and B.

dom = dues =0730 m
dnz = dp2s =1.200 m
dn1 = da1a =0.360 m
ki = duz/da =1.200/0.360 =3.330
Mu = dam/da1 =0.730/0.360 =2.027

then,

mu—1 2.028~1

L.nZ T ] = o
L k, ~-1 3.333~-1

therefore, the transition length, L,s, will be

=1~ =(0.559

use
Ltz = 3.800 m

* If stream-lined (or warped) transition is to be designed,
proceed the computation as follows:

F. _ 0442
F.+F, 0442+0222

R, 0222
ko = F 1F = 0ddz+0055 033434

X = ABS (3 (W,-W3)) =ABS (+ (110-550) =2.200 m
v. = L.=k, ¢ L,=0.66566 ¢ 3.80=2.530 m

v, = Ly=k, ¢ L;=0.33434 + 3,80=1.270 m

X, = ki, ¢ X=0.66566 ¢ 2.200=1.464 m

X = ky o X=0.33434 ¢ 2.200-:0.736 m

k, = =(.66566

Vi 2.530?
R, = 3 ( +xa) _3 (1.464 +1.464) ~2918 m

— 125 —



vy 1.270* ‘
Rb = ( ''''' +Xb) =% (W?)F +O736) =1.464 m

Line of canal bank

=2.918_jz<}3=0.736/
~

b4

(00

NB=5.50

Ex. 3 Drawdown Length Before a Straight Drop
* Suppose a straight drop is planned to be used as a measuring device, the

distance of the critical depth from the brink is figured as follows:

A

b=1.5 -
PLAN t=—1.50~1
CROSS SECTION
R e T
. 000 = ~~ 1301 | fboo e
(s csze e TR, L
[ 175
; : * L._QB,;.‘_ZQW,./ i
A C B ! o
PROFILE A B

* Given data:
Q = discharge =4.696 cms

L Section
Items
A . C B
I
Bottom Width 1.50 1,50 1.50
Side Slope 0 0 o]
Water Depth 1,221 1,000 0.715%

t The depth at brink is assumed to be 0715 d, based on H, Rouse's recommendation.

¥ Solution:
Critical depth, d., at Section C is

_ 4 /7Q £ 1
d. = mgbE T (for rectangular)
_ o/ 46%6° _
- 3}/g o = 1000 m
Q__ 4696 3131 mys

Ae = 574, 71510
h,. = Vi /(2g) =3131%/(2g) =0.500 m
d.+h,. =1.004+0.500=1.500 m‘
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* Cmpute the hydraulic properties at Points A and B

_ Section
No. Item/Equation .
A B
1 A,  =dy (d;Zy+by) 1.832 1,073
2 T, =b;+ 2d;Z, 1,500 1,500
3 dye =4, [T, 1,221 0.715
4 V., =Q /A; 2.564 4,379
5 F, =Vu/v g dn 0.741 1,654
6 Ky, —=dy/dus =+ (]/"1:;37?{—1) 0.661 1,892
7 dy, =K; - dys 0,808 1,353
8 L/d, =10 (Fy—1) 2588 6.541
9 L = (L/d,s) - dug 3.160 4677

* The transition length for the imaginary jump for Section B conditions is
required to be longer, therefore, take the B conditions as a basis and take
Section A’s depth as the intermediate depth to compute the length required
for transition. :

dim = du2a =1221 m

dvz = duzs =0.715 m

dp1 = dwiz =1353 m

ki, = dns/da; =0.715/1.353=0.529

Myt = dpw/dy:1=1.221/1.353=0.903
My -1

Loy _ma=1_. 09041 _
L =l g,=1 =151 =079

Lis = (JJL&) . L=0797 « 4677=3728 m = 370 m

* The length between Points C and B (i.e. the distance from d, to the brink.)
Q = 4696 cms

Section
No. Item/Equation
A B

1 A, =d, (dsZ;+by) 1.500 1.073
2 T, =b,+ 2d,Z, 1500 1,500
3 dpy =A,[T, 1,000 . 0715
4 v, =Q /A, 3,131 4,379
5 F, =Vi/vV gdu 1.000 1,654
6 K, =du/dw=1% (]/ 7if1fé“‘11‘g_-_1) 1000 1892
7 dny  =Ks o dps 1.000 ‘ . 1.353
8 Lidy, =10 (Fy-1) : 0.001 Lo 6,541
9 L = (Lidy) » dy 0,001 o a7
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# Take Section C as the intermediate condition,
dsw = dissx =1.000 m
dpz = du2s =0.715 m
dhl = dpis =1353 m
ki = du: /das =0.715/1.353=0.528
Mp1 = dam /dur =1.000/1.353=0.739

Loy _ma-1_ 07391
L ky ~1 0.528-1

Lo = (L, /L) - L=0.447 » 4677=2.091 m
Ex 4 " Check-up Length Before a Measuring Weir

=0.447

Position of staff gauge

|

7
L= A770.40
B ¢ yd

PLAN 4
P CROSS SECTION
1.006

1.406 .40 &

0.5l
7, oL

-

A PROFILE g

* Suppose there is a non-suppressed rectangular measuring weir installed as
shown above. The depth at Point A is obtained from following equation by
neglecting the approach velocity

Q= CorbedF
where,
Co= discharge coefficient=3% Cy/ 2g
= 1.85 (metric system)
then,

[ Q ‘g_( 2241 \% _
d“(cq-b) ~ (1o 50) * =1006 m

* The depth at Point B will obtained by applying momentum theory as follows:

T’“WT —
d =0,956 |
Pa 1.406 5% t\:‘““‘ap :
f [y
A v ¥ \ N
A B
- — =P, —-P;—-P
( ds ~ da A !

Since P, =~2~da, P = f-~—'~é~~dzn and P, =% (2dg+h)
therefore, B
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@ 2
Aw AW W 2, — \,.,VZZ_ (2ds+h)

gds g ds 2

By eliminating w and re-arranging the items, the final form will be

d3B+2d2d_ (,.2,,.q:‘+dZA“h) dn_ <\_quz> =0

g da

Since q=Q/b=2241/1.20=-1868, d=1.406 and h=0.40,

then,
Aty 2% — @ 568, 1.4063—0.40> dy— (27—1%85-3? ) =0
ds®+2d3?~2.083 dy-0.712=0
ds =0.956 m
* Given data:
g=discharge =2.241 cms
Sections
Items
A | B
Bottom Width 1.200 T 1.2C0
Side Slope 0 { 0
Water Depth 1,406 i 0.956
!
* Solutien
Sections
No. Item/Equation R e -
N L A &
A, =d, (d;Zy+by) 1.687 1,147
Ty  =dy+2d:7, 1,200 1,200
3 d,2 =Ay T, 1,406 0956
4 VvV, =Q/A; 1,328 1,953
5 F, =V g dun 0.358 0638
6 K, =dy/dy— & (‘/71#8 F~1} 0.211 0.532
7 | da =d, « dy. 0,297 0.508
g | Lid,; =10 (Fy—1) 6.440 3,637
9 L = (L{dyy) « dye 9054 3.477

* Because L,>>Lg, therefore, take the A’s imaginary jump condition as basis and
take the depth of Section B as the intermidiate depth to compute the length

required for transition.
dsm=dn25=0,956 m
dp2 =dp2,=1.406 m
dip: =dn14=0.297 m

ki =d,/dw1=1.406/0.297=4.734
Mp:1=d, m/dm:0.956/0.297:3.219
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then,

Lt~ 1 _my -1 1 3.219-1 —0.406

L K, —1 7 47341
therefore, the transition length will be
S DIPRA
L= { %) ¢ L=0406+9054=3676 m = 3700 m

* Ag a mater of interest;, the ratio L,/d,=3678 is a little bit smaller than the
ratio, 4.0, recommended by the standard installation of staff gauge for measu-~
ring weir.
8, C(Conclusion

In this paper, USBR’ S test results on natural hydraulic jump length and the
writer’s empirical formula were introduced. Then, based on she assumption that
the water surface profile between the conjugate depths is a straight line, the idea
of inserting a depth intc between the conjugate depths to obtain a ratio which
is prortional to the imaginary jump length was introduced. Of which method the
Writer thought was a way to obtain the minimum but the reasonable transition
length. A way of obtalning a stream-iined (or warped) transiticn was also in-
troduced by the proportional ratio of Froude numbers. The program of using
pocket programable culculator was attached for convenience in computation. A
few example computations were shown for application of the introduced method.
Although the method is simple and approximate, but it may be applied to almost
all kinds of hydraulic transitions.
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