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ABSTRACT

¢

E
In attempting to numerically solve the nonlinear moisture flow equation,
the Galerkin process, which bears a great similarity to direct methods of
the calculus of variations, and the CSMP (Continuous System Modeling
Program) approach have been employed. In the finite element formulation
of the governing equation, systems of nonlinear algebraic equations were
developed on the basis of linear two-dimensional triangular elements.
These nonlinear algebraic equations were solved simultaneously, at each
time step. by a programmed logic of iterations. In the CSMP approach,
Boltzmann's function application and layered soils formulation and layered
soils formulation wer edemonstr ated in obtaining vertical moisture profiles.
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\ INTRODUCTION

The recent increased demand in urban development, hydrological simulation, irrig-
ation systems design. and water resources management, etc., have reemphasized the
need for better analysis and predictive methods in the rainfall-runoff dynamic process,
which is the time variate of the process being considered- The due consideration of the
time-dependent infiltration into soil is one of the important components in a sensitive
and effective prediction of runoff from precipitation.

The nonlinear partial differential equations delineating soil-moisturerelations are
obtained by using dynamic equations, which interrelated the energy dissipated in the
system with the velocity, ie., Darcy’s law, induced ina conservation of mass statement
yielding the desired basic flow equation for homogeneous isotropic media.
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In the early stages, the Boltzmann transformation was applied by Philip (1957) and
Gardner and Mayhugh (1958) to reach a solution of the nonlinear partial differential
equation by numerical integration. Later, the finite difference method was used by
Ashcroft et al. (1962) in an attempt to solve the flow equation. Under the same concept
of numerical solution, i.e., finite difference method, Freeze (1969) developed a method to
account for many of the processes occurring under field conditions. but no comparison
was made with experimental data. In late 1969, Hanks,Klute, and Bresler established a
generalized'f numerical method (finite difference approach) of infiltration redistribution,
drainage, and evaporation. )

In the past several years. an alternative approach, the finite element method has
been introduced to the domain of fluid flow theory. The finite element method has been
used successfully in the field of structural and continuum mechanics (Zienkiewicz and
Cheung 1967).

Applications of the finite element method to steady porous media flow problems
have been studied by Zienkiewicz, Mayer, and Cheung (1966), Taylor and Brown (1967),
Neuman and Witherspoon (1970), and many others. For transient groundwater flow
problems, studies have been made by Witherspoon, Javandel and Neuman (1968), Neuman
and Witherspoon (1971), Neuman (1972), Bruch (1978), and many others.

In 1967, a powerful, dynamic simulation language called the Continuous System
Modeling Program (CSMP) was developed by IBM which provides another approximate
solution to the transient moisture flow problems. The CSMP language (IBM 1972) was
presented in such a way that the programs can be understood without any prior know-
ledge of programming techniques. The popularity of this language has been growing
rapidly in the past few years. Applications of CSMP to subsurface flow problems have
beendemonstrated by Bhuiyan et al. (1971), van Keulen and van Beek (1971), de Wit and
van Keulen (1972), van Keulen (1975), and many others.

MATHEMATICAL PRELIMINARY

Darcy’s equation for one-dimensional unsaturated porous media flow can be expres—
sedas

V- -K(6)-9%- W
dz

where V=Darcy’s discharge velocity;
K=hydraulic conductivity of the medium;
0 =volumetric moisture content;

¢ =total potential energy=—€-+z’
(where P=hydrostatic pressure,
r=specific weight of the fluid, and
z'=the vertical ordinate with positive sign upward)'.

The law of conservation of mass states that
00 av @

where t=time.

Substituting equation (1) into equation (2) yields
N a9 g
ot o8z (K(®) 0z ] 3
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Having the moisture potential < equals the pressure head—f—let z' equal —z, then
¢ becomes ’
d=v—z ' (€]
where z is positive downward.
Substituting equation (4) into equation (3) yields

%0 b ov , _ 9K(6) .
ot 0z (K®) 9z ] 9z ®
By means of chain rule, o
oy oy 80 B
9z 80 0z ' _(6)
And if K and 4 are single-valued functions of 6, then
- o
D(6) = K 26 ¢

where D(6) =moisture diffusivity of the medium.
Snbstituting equations (6) and (7) into equation (5) yields

% 8 86 . _0K(6) ‘
o7 DO =7, ®

ot 0z

Equation (8) is the popular vertical infiltration formula (Philip 1957). When only the
horizontal movement is involved. soil water conductivity isnot considered, since the
horizontal moisture movement equation has exactly the same form as equation (8)
excluding the last term on the right hand side, i.e.,

00 i) ili]
ot = E—[D(ﬁ) 72—] (8'1)_

In an attempt to solve the nonlinear vertical infiltration equation, the variational
method of the finite element technique was employed. The procedures were (1) to find
the functional of the governing differential equation for a givenproblem which Euler’s
condition satisfied; and (2) to minimize the functional to generate a solution. In other
words, solution of the governing differential equation is obtained indirectly by minimi-
zing its functional. Unfortunately, the approach of variational formulation for nonlinear
problems has no generalized means of finding its functional, for problems of this type
do not always lead naturally to variational formulations (Mikhlin 1971), and little success
has been experienced in that attempt (Remson, Hornberger, and Molz 1971). Consequently,
research efforts were concentrated on the weighted residual method of approximation
and some research findings are reported herein.

WEIGHTED RESIDUAL METHOD OF APPROXIMATION
Weighted Residual Method

The weighted residual method seeks an approximate solution that is close to the
exact solution in the sense that the difference between residuals is minimized for most
nonlinear problems (Ames 1965). Although this method does not stem from a variational
principle, it bears a great similarity to direct methods of the calculus of variations,
such as the Ritz method of solving boundary value problems based on reformulating
the given 'problem as a minimization problem. Therefore, it can be used for solving




nonlinear problems even when a classical variational principle does not exist (Remson,
Hornberger, and Molz 1971).

In équation (8), let g(z,t)=6i§‘z’i)

and AE0]=_667ED(0)‘ZZ_ _“QKagw A

where A is a differential operator.
Thus, equation (8) can be expressed as
g(z,t) =A(6) or simply A[6)-g=0 (9)
Equation (9) is valid in a solution region E.
Suppose an approximate solution to equation (9) can be expressed in a linear trial-
function, such as .

6z,0=3 Ci(2.)0,(z,t) | (10)

and after substituting equation (10) into equation (9), the residual R(z,t) can thus bé
defined as

R(z,)=AECH)—g*0 an

The n parameters C, in equation (11) are determined by the n integral equations
JgW:R(z,t) dE=0 12
For r=1,2,...,n. Where W .=weighing functions, and dE=asubregion of E. If E is
divided into finite number of elements, then dE will be one of the elements.
Again substituting equation (11) into equation (12) yields

[sW.(AEC6)~g) dE=O (13)

for r=1,...,n.
In equation (13), 6, can be solved by various trial-function techniques and the use
of weighing functions known as weighted residual methods.

The Galerkin Process

Consider that solution region E is divided into a finite number of triangular eleme-
nts with shape functions, such as, N;, Nj, and N, (Fig. 1), then equation (13) will be
valid from element to element within region E. The Galerkin process is, simply, let
‘W.=N,;, which leads in general to the best approximation (Zienkiewicz 1971). Conseq-
uently, equation (13) becomes

[sNi(AECif)~g) dE=O (14)

Equation (14) will lead to a set of n simaltaneous nonlinear algebraic equations. It
is evident that the differential operator A in equation (14) will result in a higher order
of differential terms and can be expressed as '

JeNi(A(0)—g] dE=0

ie., [Ny £ (D)0 3 - OKD _ 00y gpat=0
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where dE=dzdt,

2 |
or, 5N DD Yy pigy N, KDy 00 0 347460 a5

The appearance of the second term in equation (15) will severely limit the choice of
shape functions. To overcome this handicap, the higher order of differential terms
may be transformed by means of integration by parts. As stated by Zienkiewicz (1971):

If this transformation is accomplished in the general form, then no restrictions
are implied and if a lower order of integrals results continuity requirements of
these only need to be satisfied.

FINITE ELEMENT FORMULATION
The Higher Order of the Differential Term

The second term of equation (15) may be transformed by using integration by parts:.
f udv=uv-—-fvdu.

Consider [N, D(8) %dzdt=]’s {fudv} dt (18)
Let‘ v=gi, the dv= 6‘ 2 dz
Let u=N, D(6), then du=d(N, D(6))
. Therefore, equation (16) becomes
£:N:D(O) T -dzdt=F45 NDO) 20 azbae=1,N,D®) 20~ (9 4rn,Doy)at

=fsN,D<o>—g—dt-rs{f—a—tN,ducw+D(o)dN,J}dt

~$sN.D(O) JF- dt— 1515 50 N, PB4 gy INosygzyqr
=1:N.D©) 2 at— v, 2 3" LA YO aN' Vi dzdt an
Substituting equation (17) into equatlon 156) ylelds
£ 1N, 20 D0 N, 3L DG _p 8 20 af’—N,ﬂ{—(ﬂ— N9 Jdzat
+1sN:D (6) 02~ at=0
or (DO Ny, aK(0)+N,W]dzdt $sN.D(®) 2L at=0 O as)

where S=external surface area of solution region E.

Trial-Function

An approximate solution toequation (18) was chosen in a trial-function form so that
the solution would be valid from neighboring nodal points of adjacent elements, and
extendsto the entire solution region. Cousider the following linear trial-function:

0. H)=3 Ni(z,1)0, | a9

Comparing equation (19) to equation (10), then C,=N,
In general form, equation (19) will be
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0(Z,t) =l§=:1 ng Nuou (20)
For triangular elements, m=3, then equation (20) appears to be
n 3
0(z,t) =;=)1 ’i N0y (21)

#
Substituting equation (21) into (18) yields

FO=0DO5-E 5 N0y i+ NED N D (2 5 N0, daat

—Js Ny D(ﬂ) (Z ENuou)dt 0] 22)

Eq (22) is the Galerkin’s representation of the vertical flow equation by using
triangular elements.

NaturalCoordinates and Shape Functions

A natural coordinate system is a local system (defining a particular element in the
solution region) which permits the specification of a point within the element by a set
of dimensionless numbers whose magnitudes never exceed unity (Desai and Abel 1972).
It is precisely because of this natural coordinate system that the shape of an element
is defined. For instance, the shape functions, N,, N; and N., of the triangularelement,
Ay, in Figure 1 may be defined as

+ t + + +
N;=ﬂ——b—2‘2+#, N,=3’—‘5’5?A-~9§, N.= %ﬁg
where A=area of Ay
a|=Z_|tk"Zkt, a;=zt;—zity ar=2z,t;—2zt,
b1=t_|—tk b3=tk—t5 ) bk_—‘tl-
C1=2Zr—Z; C)y=Z1—Zx ’ Ck=2Zy—2Z;

The cartesian coordinate system, also known as a rectangular cartesian coordinate
system, is a system in n dimensions where n is any integer made by using n number
axes intersecting each other at right angles at an origin, enabling any point within that
rectangular space to be identified by the distances from the n lines. Relationship bet-
ween the natural coordinate system is illustrated in (Fig. 1):

Z=N121+NJZJ+Nka ‘ . (23)
t=N1t|+NJtJ+thk (24-)
N;+N;+Nk=l (25)

Consequently, for each set of N, N;, and N, their corresponding set of cartesian
coordinatesis unique. It is owing to equation (256) that at node i, N;=1 and N;=N,.=0,
and on side jk, N,;=0, etc. A linear relation een between the natural and cartesian
systems implies that contours of N;, N;, and Ny are equally placed straight lines parallel
to sides jk, ki, and ij, respectively. It is again precisely because of this relationship
that in the due course of deriving systems of nonlinear algebraic equations,the last term
in equation (22), i.e.,
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n 3
fa ND@®9-(E EN0,)dt

will vanish (because N;=0 in S [Fig. 2a)). ’
Simultaneous Nonlinear Algebraic Equations

The basic computer programming strategy in solving equation (22) was to consider
a group of three adjacent elements at a time (Fig. 2b). As indicated in Figure 2b,
moisture contents along the z and t coordinates were established, as initial and boun-
dary conditions, respectively. A nonlinear algebraic equation containing the flve nodal
points (with 6,1, t; and 035, t; as unknowns) of the three considered elements can be
obtained. Similarly, a set of nonlinear algebraic cquations pertaining to the first time
step can thus be established by considering the second, third,..., groups of triangular
elements. This procedure of setup systems of simultaneous nonlinear algebraic equations
has been demonstrated by Zyvoloski and Bruch (1973). Solutions for the unknowns at
each time step are provided by a programmed logic of iterations (Powell 1970),

It is worthy of note that during the process of deriving systems of nonlinear alge-
braic equations from equation (22), Felippa (1966) simplified the seemingly cumbrous
task of integrating the polynomial terms for the triangular element formulation in
equation (22).

PN 9 ,=-_piq!r! —
fa NINONG= ot g r+ 21 24

(where N, N,;, and N; are shape functions for the triangular element A;;; and A=the
area of Ausx). '

In this report, second and third degrees of polynomial interpretations of the
moisture diffusivity, D, and hydraulic conductivity, K, of the media were conducted.
Their respective systems of nonlinear algebraic equations were presented as follows:
For D(6) =Dy+D:0+D,0%, K(0)=K,+K.0+K,6? :

Then F)= ,§1 (TL, * T2,+T3,+T4+T5,+T6)=0 (26)
Where T1, =—4—2—! [b.""(1)6,: (D by ()b (1) 0,5(1) + by (1) by (16,1 ]

T2, = [D0+%‘—D1§71 6,;(D)
g
T3:= %'—Dl [J§1 6 (1) + 0, (1D 0,5(1) +0,:(1)6,5(1) + 60,5 (1 0,5(D)]

3
T4, =K (b, (D0, (D)

T8, = $ Kz {bu(1)6}' (D + ¥ bia(1) 612(D) + % bus(1OBA) + [ by (1)

+ b2 (D101 (D 012(D) + [ bia (1) + bia(1) 10,2 (1D 6,5(1) + 3 [bya(T)
+bi5(1)16:2(1)0,:(1) 1}

1 3
T6,= ‘6‘15015(1)011(1)
For D(6) =D+ D10+ D62+ Dybs, K(0) =Ko+K10+K, 024K 0




Then  FR(D)=3(TL + T2+T3,+T4+T5+T6,+T7,+T8) =0 @n

Where 7, =-35Ds {3 6% (D+0u(D LMD +01(D 1+ 0.1 (DITHID +65(D)

#0,5(D) (01D +OHD+0(D0s(DI}
T8, =55 Ks2bis (1) 65D + 3 by, (DOLD +0u (DD (2, oD

+ b1 (D) +0,:(DO (1) (2bys (D) +byx (DI +61(1)0,a (1) (2b,:(T)
+3bU(D)] + 011(D0:s(D[(2by1 (1) +3bys(1)]

+by 2(I)+b,a (1) [6:(DOE(D) + 63:(I) 015(1)]

+6:1(D0,:(10;5(1D [b11(1) +2b 5 (1) +2b,s(1) 1]
In equations (26) and (27), the argument I=1,2,,.. was exhausted at the last group of
elements in each time step.

THE CSMP SOLUTION

The S$/360 Continuous System Modeling Program (CSMP) which is the brainchild

of IBM researchers, provides a broad spectrum of applications in simulating dynamic

systems. In using the CSMP, a simulation problem is programmed for solution by
preparing structure, data, and control types of statements. The input language enables
a user to prepare statements describing a physical system, starting from a differential
equation representation of that system. A simulation problem is then solved through
commanding statements in applying the necesisary bult-in functions (total of 34 functi-
onal blocks).

The S/360 CSMP was designed for the general purpose of simulating time dependent
continuous systems, and its high degree of flexibility offers almost a free hand in
programming logic. A simulation problem can be prograxrimed in almost completely
different logic, depending upon approaches adopted in solving that problem. For the
problem onhand, two versions of programming logic are illustrated.

The first approach is applying Boltzmann’s transformation in solving the horizontal
infiltration problem. Recall that equation (8.1), the horizontal moisture movement
equation, can be expressed as

00 7}

00
ot =0, P05, €D

where t and z are independent variables. For programming purposes, t and z will be
substituted by Boltzmann’s transformation function, as

A(0)=zt™12 (28)
where A=Boltzmann’s variable,fand z=distance.

Taking the partial derivative of 1 withrespect to t yields

2 2 t
at = —‘;‘tslz 6/1=-—7 “—t_l—/zal
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or | ot =%m. - (29)

Similarly, z=t129. 80)
Substituting equations (29) and (30) into equation (8.1) yields
B _ 2 &,
7 i wy (D@, 1
ao _ _do 2 dD(0) 1
or ar - "ar C b+ a1 D) @b
dD(ﬁ) dD(@® d¢

In equation(81),—;*can be substituted by- @ A

The final expression is

2

- 1215“0) yie D(10) 2)
with 1 as the only independent variable.

In CSMP solution the initial value of d6/dA in equation (32) is related to the initial
value of the soil in an unknown way, as suggested by de Wit and van Keulen (1972)
simulations have to be carried out for a range of values of df/dA until the specified
initial moisture content is matched.

The second approach is directly applying Darcy equation (eq. (1)) and the law of
conservation of mass (eq. [2]) in solving infiltration problems in horizontal or vertical
directions. In other words, in the solution process, partial differential equations such
as equations (8) and (8.1) are not needed. The basic solution strategy is dividing the
soil into numerous number of layers of equal thickness. The net flux of water through
each layer at any particular time is established by applying the principles of conserv-
ation of mass and Darcy’s equation. The ensving water content at each layer can thus
be calculated by integrating the net flux by means of the suitable built-in functional
block in SCMP (Bhuiyan, Hiler, Bavel and Aston 1971). Consequently, input data for
this approach of solution are total moisture potential and conductivity curves for
intended soils: For layered soils, pertinent total moisture potential and conductivity
curves, for the various layers should be provided. The capability of handling soil
inhomogeneity is the greatest advantage of this approach.

APPLICATION
Vertical Infiltration into Layered In Situ Soil

Tantalus silty clay loams are located in upper Manoa valley on the island of Oahu,
Hawaii. Field hydraulic properties of this soil at various depths were investigated in
situ by Ahuja and El-Swaify (1975). It was found that the Tantalus silty clay laom
has homogeneous soil conditions down to the 80-cm depth or so from the surface soil.
Beyond that point, inhomogeneity characteristics of the soil were observed between the
various 30-cm layers down to the 6-ft depth. In considering the consistency of initial
and saturated moisture content, the soil water content between adjacent layers vs.
suction curves at depths of 7.6, 22.9 and 45.7cm are presented in Figures 8 and 4, and
conductivity vs. water content data measurements at 30.5- and 61.0-cm depths are
shown in Figures 5 and6. For demonstrative purposes, the first two 30-cm layers were
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considered. 1

Considering the first layer as an independent soil sample, the finite element and
CSMP solutions were conducted (Fig. 7). For the finite element solution, the diffusi-
vity curve was derived from the suction curves in Figure 3 by means of the following
equation

D(6) =K(0)g—;~

where 7 is the soil-water suction (measured in cm of water depth). The resulting
diffusivity curve and conductivity vs. water content data in Figure 5are interpreted in
cubic equation forms as '

D(6)=—12592,7+64281,26—109372, 402+ 622140% cm?/hr

K (6)=—255.5+1276.90—2125.102+1177.46% cm/hr
For the CSMP solution, the suction curve for the homogeneous first laver was averaged
from the drying curves in Figure 3(a) and (b), and the conductivity vs. water content
data were read in pairs from Figure 5 without attempting curve—fitting.

As shown in Figure 7, the consistency of the two numerical solutions seems to
verify the validity of the two different approaches.

For the two-layer soil case, which includes the top first layer and the second layer,
the suction curve in Figure 4 and the conductivityvs. water content data in Figure 6
were adopted for the second layer. The resulting CSMP solutions for vertical moisture
profiles for 10, 20, 40, 60, 120 and 180 minutes after water infiltration took place are
plotted in Figure 8.

DISCUSSION AND CONCLUSIONS

In atttemping to numerically solve the nonlinear moisture flow equation, the finite
element method offers a convenient alternative to the finite difference method. Once
the basic finite element formulation is established, the computer programming is rela-
tively straightforward. However, in solving field problems, the efficiency of the finite
element technique will hinge on the correctness of representing the diffusivity, D(0),

and conductivity, K(#), functions of the media. For example, it was found out that
equation 26 had only limited applicability, because a second degree polynomial can
accurately describe the D(6) and K(8) functions only in the wetter portion of the D(4)
and K(0) vs. moisture content, 0, curves. Thus, equation 26 gave convergent results
only when z; the initial moisture content of the soil appeared to be high. Third degree
polynomial interpretation of the D(#) andK(f) curves enables an increase in the range
of initial moisture content which would give convergent results. Some applications for
Hawaiian soils show good correlation with experimental results. However, with initial
moisture content less than 20%, even using third degree polynomial expressions for the
D(0) and K(0) functions, convergent results could not be achieved. The facts seem to
indicate that a better means of representation of the D(f) and K(f) functions of the
soil media is vital to the success of the finite element technique.

Throughout the course of this study, the CSMP approach of solving the transient
moisture movement in some Hawaiian soils has been demonstrated. The conciseness of
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the CSMP language, its being free of function-fitting in handling numerical data in the
simulaticn processes coupléd with its sophisticated internal numerical'in’tegration c:«:ipa-
bility, suggest that the CSMP method (which was primarily designed for enginéers
and scientists working in dynamic modeling areas) might probably be the most valuable
engineering approach in problern—oriénted applicationé; '
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