Frequency Analysis of Annual Debris Volume
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ABSTRACT §

The annual debris volume, the sum of debris produced by
individual storms occurring in one year, is considered as a kind of
problem involing a random number of random variables. The
number of debris producing storms occurring in one year is assumed
to be a Poisson variate and the debris produced by a single storm
is assumed to follow the normal probability distribution. A triple
parameter, compound probability function of the annual debris
volume is derived in an implicit form. The mean, variance, and
skewness of annual debris volume are also derived from the moment-
generating function. The derived compound probability function
is used to fit debris data and a comparison with the log-Pearson

distribution is presented.

PN i

P P P P PP i i e

INTRODUCTION

In many urban areas mud-debris flow due to heavy rainfall very often causes
property damage or even disaster. Sometimes open channels fail to convey design flood
flow because channels are clogged with debris. The capacity of reservoirs decreases
due to debris accumulation after heavy rainfalls, and as a consequence, flood control
and water conservation functions of the reservoirs are diminished. The mud-debris
flow is a very complex phenomenon. It involves many factors still yet unknown.
To date, a good approximate rhysical model describing mud-debris flow has not been
successfully developed. Nor has a reliable mathematical equation been derived to
relate debris volume to its causative factors. There are several ways, such as check
dams. which are employed to try to reduce debris production. However, without a good
understanding of the mud-debris flow, it is difficult to evaluate the effectiveness of
check dams on the reduction of debris production in the long run. Statistical analysis
of debris data alone cannot prove nor disprove the effectiveness of check dams. As a
consequence. retainirg debris at convenient places along the watershed and then
removing accumulated debris at a more convenient time has become a common practice
in dealing with debris problems. .
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To decidz the capacity of debris basins to retain debris and tos et up the schedule to
remove accumulated debris require a knowledge of the frequency of the debris volume
produced by a watershed. In this instance. the total debris volume produced by a
storm or the total debris volume during a given period of time is more important than
the peak instantaneous debris flow rate. The purpose of this paper is to present a
compound prqbability function for analysis of the frequency of the annual debris
volumes produced by a watershed. In this study, the debris volume produced is
considered as a stochastic process (i. e. debris volume is a time function and governed
by some probability law). Debris volume produced by a storm is considered as a
continuous random variable and assumed to follow the normal probability function
The number of storms which produce debris occurring in one year is also considered
as a discrete random number and assumed to follow the Poisson probability law.
The annual debris volume which is the sum of debris volume produced by individual
storms occurring in one year is, therefore. a kind of problem involving a random number
of random variables. A compound proqability function with three parameters is
derived for the annual debris volume based on the Poisson and the normal probability
distribution and is used to fit historical debris data. The comparison of this compound
probability function and the log-Pearson distribution in fitting data is presented. Statis-
tical parameters of the annual debris volume, such as mean, variance, and coefficient
of skewness are obtained from the moment-generating function.

CHARACTERISTICS AND ASSUMPTIONS OF DEBRIS TIME SERIES

Debris phenomenon is stochastic in the sense that on the basis of the present state
only probabilities of the future events may be estimated. This study of debris pheno-
menon follows in principle this probabilistic approach. With respect to the nature of
the phenomenon, this approach is the most logical for the analysis and prediction of
the future characteristics of the time series of debris.

For a debris stochastic process, if N, stands for the number of storms producing
debris in the interval of time from O to t. which gives the present state of the process,
the number of storms, Nut+ae in the interval of time from t to t+At, can never be
predicted with certainty for any At>>0. In other words. the number of debris producing
storms occurring in the time interval of t to t+At is a random variable defined over
some probability space for every At>0. Since the number of debris producing storms
can only be a non-negative integer number, Ne.+a: is, therefore, a discrete random
variable. Only the probabilities.

Pr{Nui+ai=k}, k=0,1,2 3,:ceeee

e
wherekE Pri{N:.+at=k}=1 for all t>20, and At>0, may be estimated.
=)

It should be noted here that in this study only debris producing storms are con-’
sidered. Those storms which do not produce debris are not taken into account.

If V., stands for the volume of debris produced by the jth storm of the ith year,
V.) can not be predicted with certainty by the present state of the process. Since
debris volume, V,.;, produced by a storm is a non-negative real number, it is a conti-
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nuous random variable. Only probability density.
Prix£V, . Zx+Ax}=f(x)dx, x>0

wherefgD f(x)dx=1, may be determined.

In this study, the following properties of basic stochastic processes are assumed:
Both N, and V,,; are stationary stochasic processes. This implies that
Pri{Nui+ac=k} =Pr{Nu:at. t+2a:=k}
=Pr{Nisoat, t+3a: =K} =Pr{Nisssat. traag=K} = reeeeees
and Pr{V, £x}=Pr{V,  Zx}=Pr{V,sox} = rseecee:
=PriVis11LX} =Pr{Vi s, Kx}=reerreers
=Pr{V o1 X} =Pr{V s fx} =-rcererer
It is assumed that no significant change in characteristics of a watershed are
expected in the future. The results of this analysis can be applied only when these
assumptions are indeed valid since the time-invariant parameters of the probability
function are estimated from historical data.
In this study, it is assumed that the number of debris producing storms occurring
in one year, N, .+,” a non-negative integer number, where t, which denotes years, follows
the Poisson distribution. Therefore, the probabilities of the number of debris produ-

cing storms occurring in one year are

"'I\lk

E!“ fOI‘ k=0) 17 2! b
The probability density function of the debris volume produced by one storm, V,,’ is
assumed to be the normal probability density function or

-1 -(x—mf20?
f(x) ﬁ” P e
" The normal probability function may have a small probability for negative V,., parti-
cularly when « is small and ¢ is large. This small probability, however, may be

ignored since only large debris volumes are of most concern.

COMPOUND PROBABILITY FUNCTION OF THE
ANNUAL DERBRIS VOLUME

PriN,.n=k}=-%

The total debris volume produced by one storm or during a given period of time
rather than instantaneous peak debris flow rate during a storm is of primary impor-
tance for many debris problems. For convenience, one year period is selected as a
unit of time. Therfore, the annual debris volume, V,, which is the total debris volume
produced in the ith year and is equal to the sum of debris produced by one or more
storms occurring in that year, may be expressed as

k,
v, =s§1 VI,J—_—V“1+V“2+.“+Vi,k1 ............................................................... (1)

where k, is the number of debris producing storms in the ith year, or N, .=k,
Therefore, in this case, the number of random variables contributing to the sum is

itself a random variable.
By using the conditional probability, the probability function of the annual debris

volume, V, may be expressed as
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Annual Debris Volume

©
Pr{Vzx} =k§fPr{V4x/Nm+1=k} Pr{N.:+1=k}

From the properties of the normal probability distributicn, it is also known that if V,,,
aref.independent normal random variables distributed with a mean # anc a variance o2
then the sum, V, defined in equation 1, will also be normally distributed with mean kg
and variance ko*®. Thus, the compound probability function of the annual debris
volume is given by

R _eMx ( 1 —(x ku)¥2k o°
= IY = . - N7 sesecearesiesenies
F(x) =PriV.Zx} “x Kkt 1/21( P dx 2)

and the compound probability density function of the annual debris volume is given by

f(x)=020 e-rik 1 o~ (X ku)?2k o?

& kK V2%me & TN ¢33

An unbiased estimator of three parameters of the compound probability function can
be obtained in the following manner. The average number of debris producing storms
in one year. 4, may be computed by the equation

99.9 998 3 . .| .
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Annual Debris Volume

where k is the number of debris producing storms in one year, and Y. is the number
of years having k number of debris producing storms. The average debris volume
produced by a single storm, #, may be estimated by

n kl n
u= l§1 .151 Vi /:_;lkl ............................................ cetrerenes (5)

where V,,, is the debris volume produced by the jth storm of the ith year, k, is the
number of debris producing storms which occurred in the ith year, and n is the total
length of the historical record in years. The variance of debris volume produced by a
single storm, ¢?, may be determined by

n k n
=% 3 (Vi )t [ (SR —D)ererrrersereneneniseseecsennns e s ererrenerens (6)
=1 J=1 =1

Based on the present state of process, three parameters may be estimated from
equations 4 to 6. Using the resulting triple parameter compound probability function,
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the probabilities ©«. the annual debris volumes for succeeding years may thus be

estimated.
The compound probability function of the annual dzbris volume given by equation

2 is graphically shown for several values of «, 4. and C,=u#'s. coefficient of variation.
Fig. 1 shows that, for given values of « and ¢, the probabilities of the annual debris
volume exceeding a given value increase with increasing & Fig. 2 shows that that
these probabilities will also increase with increasing « for given valuss of 4 and C,.
Finally, Fig- 3 shows that these probabilities also increase as C, increases.

STATISTICAL PARAMETERS OF THE ANNUAL DEBRIS VOLUME

Sometimes it is desirable to be able to summarize somz of the outstanding features
of the compound probability function of the annual debris volume by specifying only a
few paramsters rather than an entire function. These parameters are the mean, the
varance, and the coefficient of skewness. They arz used to measure some important
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characteristics of the annual debris volume and may be easily obtained from the
moment-generating function.

The moment-generating function of a probability law is a function m(t) defined
for all real numbers t by®

m(t) =E[e*"]

where the operator E indicates an expectation. In other words, m(t) is the expectation
of the exponential function e'*. According to this definition and the derived probability
density function of the annual debris volume as given in equation 3, the moment-
generating function m(t) will be

(o]

m(t) = f e'*f(x)dx
_Tetrd 1 ~(x—kw)2%ko?
=2 k! J_Ooe V2o ® dx
_ Jer Ak kpt+ kot
o 3
_r S Gty
= k!
ut+ % ot
R [eie z R T T T NP )

It can be shown that all the moments of the compound probability function exist
and may be expressed in terms of the successive derivatives at t=0 of the moment-
generating function.”> Thus, the mean of the annual debris volume, V, based on the
compound probability function is

sz[V]: (;it mdt) ,t:O:X'u ................................................................... (8)

The second moment of the compound probability of the annual debris volume is given
by

E(Vi= (?t: m(t) ltzoz(/l‘u)z_{./l(laz_f.gz) ................................................ '©))
The variance of the annual debris volume is given by

Var V=E(V—E(V))!=E(V2) —[E(V) 2= 2u2(1+Cy2) +errreerercrerersrcrersnacs. (10)
Similarly, the third moment of the compound probability function is given by

E(V3)=—§:Tm(t) ] £ 0= A+ B2+ 0% dpr (2 Bg%)rovnssevnvs e (1)
The third central moment, E(V—E(V))?, if expanded has the form

E(V-E(V))}=E(V?)—-3E(V)E(V2)+2(E(V))?=2Au3(1+38Cy2) -eereersenrnens az)
The coefficient of skewness of the anuual debris volume, Cg, is usually defined as

c,— ECV-E(V 0P AEBCET) s e e (13)

(Var V)2 = v L (A+Cy2)2
It is clearly shown in Eq. 13 that the coefficient of skewness of annual debris volume,
Cs, is always positive and is maximum when the coefficient of variation, Cy, is equal
to unity for a given value of . This maximum skewness coefficient is equal to 1/2/4.
Thus the statistical parameters of annual debris volume may be expressed in terms of
A 4, and Cy-



THE FITTING OF DEBRIS DATA

As an application of the derived method. the compound probability function of the
annnal debris volume is used to fit historical debris data. For this purpose, debris
data of the San Dimas reservoir collected for more than four decades by the Los
Angeles County Flood Control District will be used. For the San Dimas reservoir, it
is found from debris data that, over a period of 43 years, one debris producing storm
occurred during twelve years, two storms during two years, and no significant debris
flow occurred during the remaining years. Thus, from equation 4,

_ S kY, _12x1+2x2 _ 16 _
hey B AR R _0amat

From the debris data and equations 5 and 6, the mean and the standard deivation of
debris volume_for a single storm are #=107.38 acre-ft. and ¢=78.21 acre-ft. respectively,
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yielding a coefficient of variation of variation of Cy=073. The compound probability
function of the annual debris volume for the San Dimas reservoir is, therefore, given by

Foo— s e O @argyr xS OTIOTIRISIDT

K=l k! o v 2k (78.21)
The probability of any annual debris volume may thus be easily estimated from the
above equation by using the standarized normal table and the probability curve of the
annual debris volume for the San Dimas reservoir which is shown in Fig. 4 To show
the goodness of fit of the compound probability function, the Weibull formula may be
used'?, that is,

Pri{V,>Xat==m/(N 1) rorereeerrremmiisniinis sttt 14)
where X, is the mth rank of the annual dedris volume in data in descending order and
N is the total length of record.

It is desirable to compare the proposed compound probability function and some
other probility functions that are now in common use. For this reason the log-Pearson
type Il distribution is selected-** If log V=y, then y may be expressed in terms of
mean, ¥, standard deviation, Sy, and frequency factor, k, which depends on skewness,
Cs, and the probability by

y=y+ kS,

These statistical parameters are computed by the following formula:

- NQ
y= 1211}’1/Nd,
N,
Sy= ¥ (y YN, -1

Nd
N, 1§1(y1 —y)?

Co= [<N1, Sy )/
where N, is the number of years that significant debris flow are recorded. From
debris data of the San Dimas reserveir with N,=14, it is found that

¥=19224, S,=0.4231, and C;=-0.2648
Since the probability, P;, of the annual debris volume estimated with the log-Pearson
distribution® is based only on the 14 years during which-debris flow occurred, it must
be adjusted for the entire length of the record- This is accomplished by multiplying
P, by Ny/N=14/43. That is,

P=P, (14/43)
where P is the probability of the annual debris volume for the entire length of record.
The probability curve of the annual debris volumz for the San Dimas reservoir based
on the adjusted log-Person distribution is also shown on the same figure for the com-
parison.

As shown on the Fig., the compound probility function and the adjusted log-Pearson
distribution behave very differently. The adjusted log-Pearson distribution seems to
predict low annual debris volumes quite well, but it underestimates the intermediate
annual decbris volumes. In contrast, the compound probability function seems to fit
intermediate annual debris volumes very well but underestimates low annual debris
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volumes. The other impoitant difference is that the annual debris volume for the
compound probability funciion does not increase as fast as for the adjusted log-Pearson
distribution for the same probability.
CONCLUSIONS
The following conclusions may be stated based on the results of this study:
1. The assumptions of the Poisson distribution for the number of debris storms

occurring in one year and cf the normal probability distribution for the debris volume -

produced by a shingle storm are not necessary for establishing a compound probability
function, though they are used in this study to illustrate the method.

2. The compound probability function seems to fit debris data quite well, parti-
cularly for intermediate and high annual debris volume. Since high annual debris
volumes are of most concern, this approach of using a compound probability function is
of practical importance in the frequency analysis of the annual debris volume.

3. This approach can also be applied to some other hydrologic variables, besides

the annual debris volume when hydrologic variables are the sum of random variables

and the number contributing to the sum is itself a random number.

4. Since the adjusted log-Pearson distribution seems to overestimate high annual
debris volume and to underestimate intermediate annual debris volume, it should be
used with extreme care when high and intermediate debris volume are of particular
concern in the frequency analysis. ‘ ’

5. Estimation of probability based on the proposed compound distribution requires
one first moment and two second moment parameters while estimation of probability
based on the log-Pearson distribution requires one first moment, one second moment,
and one third moment parameter. It is well known that high moment parameters
estimated with limited data are not very reliable. For this reason, the proposed
compound distribution is more desirable in the frequency analysis of annual debris
volume, particularly when debris data is very limited.

6. Since the proposed method uses debris volume produced by individual storms to

estimate parameters, it fully utilizes the limited data and abstracts the maximum
information from the data. As shown in the example of San Dimas reservoir, sixteen
individnal debris volumes were used for the proposed compound distribution. Only
fourteen annual debris volumes were used for the log-Pearson distribution.
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