(10)
(11)
i
Pr(ω)
R
G
B
IR
z
i
ii
i
ω if Pr(ω) Pr(ω) > Pr(ω) Pr(ω),
for all jk
kk
k
j
j
zz
z
.................................(13)
59
i
i
i
i
i
=
R
G
z
B
IR
....................................(8)
(13)
(14)
(15)
ii
i
k
ik
g() =lnPr(ω) Pr(ω)
ln Pr(ω) + ln Pr(ω)
k
k
zz
z
....................(14)
R
i
i
G
i
i
B
i
i
IR
i
i
ii
j
i
ω if g() > g() , for all jk
kk
zz
z
.......(15)
i
g(z)
k
(Dis-
criminate Function) (Richards and Jia., 2006)
2.3.3
(Multivariable Normal
Class Models)
S
k
k
i
z
i
k
(9)
i
z
i
ω
i
Pr(ω
), k=1,2,...,
k
z
S...................................(9)
i
ii
Pr(ω)
z
(Lillesand and Kiefer,
2000)
y
(band)
i
Pr
(ω)
k
z
i
z
i
z
i
k
(10)
ω
k
1/2
/2
ii
1
ii
Pr(ω) = (2)
1
exp
(
)
(
)
2
y
k
t
kk
k
z
zm
zm
i
i
i
ω if Pr(ω
) > Pr(ω
), for all jk
kk
j
zz
z
..................................(10)
.................................(16)
(9)
i
)
Pr(ω
k
z
(Bayes’
Theorem)
ii
k
Pr(ω
) = Pr(ω) Pr(ω)/ Pr()
k
k
zz
i
z
.........(11)
k
m
k
(mean vector)
k
(covariance
matrix)
(16)
(14)
(17)
k
ik
1
i
1
g()=ln Pr (ω) -
2
1
()
(
)
2
k
k
t
ki
k
k
z
zm
z
m
.......(17)
k
Pr(ωz
i
)
i
z
i
ω
k
i
Pr(ω
z
)
k
i
)
z
k
(prior
probability)
i
z
i
Pr(ω)
k
Pr(
ii
1
Pr() =
Pr(ω) Pr(ω
S
k
k
zz
)
k
.....................(12)
k
(Richards and Jia., 2006)
(17)
(Discriminant
Pr(ω)
k
Pr(ω)
k