N
(3)
L
N
58
...
12
3
L
N
NN
N
N
........................(1)
1
L
i
i
i
L
st
i
NX
X
N
1
i
i
WX................................(3)
N
i
i
(Weight)
st
X
i
i
N
W
N
....................................(2)
N
i
i
i
X
i
N
(3)
st
X
i
X
W
i
i
N
i
i
(Linear Combination)
11
2
2
22
2
12
1
11
22
1
2
1
3
2
11
()
(
...
)
(
)
(
)...
(
)2
(
,
)2
(
,
()2
(,
)
st
ll
n
LL
L
ii
j
i
i
j
ii
ji
VX
VWX
WX
WX
WVX
WVX
WVX
WWCovXX
WWCovXX
WVX
WWCovXX
3
)...
.......(4)
()
st
VX
2.3
2.3.1
(Supervised Classification)
()
,
ij
XX
Cov
i
i
X
j
j
X
i
X
j
X
()
,
ij
XX
Cov
0
(4)
2
()
1
()
L
st
i
i
VX
W
i
VX....................................(5)
(Training Areas)
(
)
(
2001)
Richards and Jia (2006)
1.
…
()
i
i
VX
(6)
2.
(Repre-
sentative Pixels)
(Training
Areas)
2
()
i
ii
i
ii
sNn
nN
2
i
S
VX
....................................(6)
i
n
i
i
(6)
(5)
3.
(Signature)
2
2
2
2
1
1
()
L
L
ii
i
i
st
i
i
i
i
ii
sN
n
s
VX
W
W
nN
n
(1
)
i
i
f
4.
....................................(7)
W
i
i
f
i
i
(f
i
=
n
i
/N
i
)(1
f
i
)
f
i
5%
(Cochran,
1977)
5.
6.
2.3.2
(Bayes’ Cslassification )